Abstract

Applications of copper nanoparticles (NPs) are restricted due to their proneness to oxidation by ambient oxygen if not properly protected. Here we discuss the optical properties and application potential of copper NPs covered by a thin oxide layer. Considering Cu@Cu2O core–shell type structures with different core size and shell thicknesses, linear optical properties of surface-oxidized copper NPs have been studied theoretically. Contrary to common perception, it has been demonstrated that surface-oxidized copper NPs have certain advantages for plasmonic applications. While the position of the surface plasmon resonance (SPR) can be fine-tuned by varying the thickness of the oxide layer, their plasmonic response can be enhanced (SPR intensity gain up to 30%) by adjusting the thickness of the oxide layer.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).
  3. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
    [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  5. Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127, 1487–1492 (2005).
    [CrossRef] [PubMed]
  6. T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory,” J. Phys. D 42, 015308 (2009).
    [CrossRef]
  7. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
    [CrossRef] [PubMed]
  8. J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010).
    [CrossRef]
  9. Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113, 20896–20902 (2009).
    [CrossRef]
  10. S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane,” Phys. Chem. Chem. Phys. 10, 5870–5874 (2008).
    [CrossRef] [PubMed]
  11. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
    [CrossRef]
  12. S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112, 19866–19871 (2008).
    [CrossRef]
  13. L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403–409 (2007).
    [CrossRef]
  14. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47–52 (2004).
    [CrossRef] [PubMed]
  15. Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal–dielectric core–shell nanostructure,” Plasmonics 5, 311–318 (2010).
    [CrossRef]
  16. J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005).
    [CrossRef]
  17. N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
    [CrossRef]
  18. Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
    [CrossRef] [PubMed]
  19. L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E 68, 066601 (2003).
    [CrossRef]
  20. Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
    [CrossRef]
  21. J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007).
    [CrossRef]
  22. C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
    [CrossRef] [PubMed]
  23. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
    [CrossRef]
  24. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
    [CrossRef]
  25. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in Silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
    [CrossRef] [PubMed]
  26. M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
    [CrossRef] [PubMed]
  27. K. P. Rice, E. J. Walker, M. P. Stoykovich, and A. E. Saunders, “Solvent-dependent surface plasmon response and oxidation of copper nanocrystals,” J. Phys. Chem. C 115, 1793–1799(2011).
    [CrossRef]
  28. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
    [CrossRef]
  29. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007).
    [CrossRef]
  30. L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1, 128–137 (2011).
    [CrossRef]
  31. D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
    [CrossRef] [PubMed]
  32. G. Mie, “Beiträge zur Optik trüber medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
    [CrossRef]
  34. O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354(2009).
    [CrossRef]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  36. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832(1999).
    [CrossRef]
  37. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008).
    [CrossRef]
  38. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1997).
  39. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42, 1710–1720 (2003).
    [CrossRef] [PubMed]
  40. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989).
    [CrossRef]
  41. H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
    [CrossRef]
  42. Z. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires,” Adv. Mater. 15, 303–305 (2003).
    [CrossRef]
  43. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
    [CrossRef] [PubMed]
  44. O. Peña-Rodríguez, U. Pal, V. Rodríguez-Iglesias, L. Rodríguez-Fernández, and A. Oliver, “Configuring Au and Ag nanorods for sensing applications,” J. Opt. Soc. Am. B 28, 714–720 (2011).
    [CrossRef]
  45. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
    [CrossRef] [PubMed]

2011 (4)

K. P. Rice, E. J. Walker, M. P. Stoykovich, and A. E. Saunders, “Solvent-dependent surface plasmon response and oxidation of copper nanocrystals,” J. Phys. Chem. C 115, 1793–1799(2011).
[CrossRef]

L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1, 128–137 (2011).
[CrossRef]

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

O. Peña-Rodríguez, U. Pal, V. Rodríguez-Iglesias, L. Rodríguez-Fernández, and A. Oliver, “Configuring Au and Ag nanorods for sensing applications,” J. Opt. Soc. Am. B 28, 714–720 (2011).
[CrossRef]

2010 (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010).
[CrossRef]

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal–dielectric core–shell nanostructure,” Plasmonics 5, 311–318 (2010).
[CrossRef]

2009 (4)

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113, 20896–20902 (2009).
[CrossRef]

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory,” J. Phys. D 42, 015308 (2009).
[CrossRef]

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354(2009).
[CrossRef]

2008 (4)

O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008).
[CrossRef]

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane,” Phys. Chem. Chem. Phys. 10, 5870–5874 (2008).
[CrossRef] [PubMed]

S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112, 19866–19871 (2008).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

2007 (7)

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403–409 (2007).
[CrossRef]

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007).
[CrossRef]

Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
[CrossRef]

J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007).
[CrossRef]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

2005 (6)

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[CrossRef] [PubMed]

Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127, 1487–1492 (2005).
[CrossRef] [PubMed]

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
[CrossRef] [PubMed]

H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

2004 (2)

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47–52 (2004).
[CrossRef] [PubMed]

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

2003 (6)

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E 68, 066601 (2003).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Z. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires,” Adv. Mater. 15, 303–305 (2003).
[CrossRef]

W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42, 1710–1720 (2003).
[CrossRef] [PubMed]

2002 (2)

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in Silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

1997 (1)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1997).

1989 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik trüber medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Abernathy, C. R.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Ai, Z.

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113, 20896–20902 (2009).
[CrossRef]

Albert, J.

Alivisatos, A. P.

C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[CrossRef] [PubMed]

Alivisatos, P.

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47–52 (2004).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Averitt, R. D.

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Bando, Y.

Z. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires,” Adv. Mater. 15, 303–305 (2003).
[CrossRef]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Barry, S. T.

Bein, T.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Birnboim, M. H.

Boatner, L. A.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

Brogl, S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Burda, C.

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

Chan, G. H.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007).
[CrossRef]

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
[CrossRef] [PubMed]

Charron, E.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Chim, W.-K.

Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127, 1487–1492 (2005).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chu, Y.

Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
[CrossRef]

Chumanov, G.

S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112, 19866–19871 (2008).
[CrossRef]

Coyle, J. P.

Crespo-Sosa, A.

Debrus, S.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Dong, L.

Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Feldmann, J.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Fieres, B.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Fofang, N. T.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Gao, L.

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403–409 (2007).
[CrossRef]

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E 68, 066601 (2003).
[CrossRef]

Ghodselahi, T.

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory,” J. Phys. D 42, 015308 (2009).
[CrossRef]

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Gong, H.-M.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

Grady, N. K.

H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

Gu, L.

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E 68, 066601 (2003).
[CrossRef]

Guo, D.-L.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

Halas, N. J.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832(1999).
[CrossRef]

Hamza, A. V.

J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007).
[CrossRef]

Han, J.-B.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

Han, Y.-B.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

Hayes, J. R.

J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007).
[CrossRef]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Hebard, A. F.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Hicks, E. M.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007).
[CrossRef]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Ho, W.

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113, 20896–20902 (2009).
[CrossRef]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Hudson, S. D.

S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112, 19866–19871 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

Jagirdar, B. R.

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane,” Phys. Chem. Chem. Phys. 10, 5870–5874 (2008).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Jian, Z.

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal–dielectric core–shell nanostructure,” Plasmonics 5, 311–318 (2010).
[CrossRef]

Jian-Jun, L.

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal–dielectric core–shell nanostructure,” Plasmonics 5, 311–318 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jun-Wu, Z.

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal–dielectric core–shell nanostructure,” Plasmonics 5, 311–318 (2010).
[CrossRef]

Kalidindi, S. B.

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane,” Phys. Chem. Chem. Phys. 10, 5870–5874 (2008).
[CrossRef] [PubMed]

Käll, M.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in Silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

Kim, D.-K.

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

Kim, J.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Klar, T. A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Koberstein, J. T.

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

Kuntz, J. D.

J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007).
[CrossRef]

Kurzinger, K.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Lee, S.

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113, 20896–20902 (2009).
[CrossRef]

Lee, S. Y.

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

Lei, Y.

Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127, 1487–1492 (2005).
[CrossRef] [PubMed]

Li, L.

Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
[CrossRef]

Li, M.

Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
[CrossRef]

Li, Z.

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E 68, 066601 (2003).
[CrossRef]

Liu, Y.

Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
[CrossRef]

Liu, Z.

Z. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires,” Adv. Mater. 15, 303–305 (2003).
[CrossRef]

Lou, Y.

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Mirin, N. A.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Neeves, A. E.

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Nichtl, A.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Nordlander, P.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Norton, D. P.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Nyce, G. W.

J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007).
[CrossRef]

O’Brien, S.

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

Oliver, A.

Overberg, M. E.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Pal, U.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1997).

Palpant, B.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Park, J. Y.

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

Park, T. J.

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Park, Y. D.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Pearton, S. J.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Peña, O.

Peña-Rodríguez, O.

Petkov, N.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Pinçon, N.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Prot, D.

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Raschke, G.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Ren, F.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Rice, K. P.

K. P. Rice, E. J. Walker, M. P. Stoykovich, and A. E. Saunders, “Solvent-dependent surface plasmon response and oxidation of copper nanocrystals,” J. Phys. Chem. C 115, 1793–1799(2011).
[CrossRef]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Rodríguez-Fernández, L.

Rodríguez-Iglesias, V.

Rogach, A. L.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Sanyal, U.

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane,” Phys. Chem. Chem. Phys. 10, 5870–5874 (2008).
[CrossRef] [PubMed]

Satcher, J. H.

J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007).
[CrossRef]

Saunders, A. E.

K. P. Rice, E. J. Walker, M. P. Stoykovich, and A. E. Saunders, “Solvent-dependent surface plasmon response and oxidation of copper nanocrystals,” J. Phys. Chem. C 115, 1793–1799(2011).
[CrossRef]

Schatz, G. C.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
[CrossRef] [PubMed]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Shafiekhani, A.

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory,” J. Phys. D 42, 015308 (2009).
[CrossRef]

Shao, L.-Y.

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[CrossRef] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Stoykovich, M. P.

K. P. Rice, E. J. Walker, M. P. Stoykovich, and A. E. Saunders, “Solvent-dependent surface plasmon response and oxidation of copper nanocrystals,” J. Phys. Chem. C 115, 1793–1799(2011).
[CrossRef]

Susha, A. S.

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

Tam, F.

H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

Tamiya, E.

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

Thaler, G. T.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Theodoropoulou, N.

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

Van Duyne, R. P.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
[CrossRef] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Vesaghi, M. A.

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory,” J. Phys. D 42, 015308 (2009).
[CrossRef]

Walker, E. J.

K. P. Rice, E. J. Walker, M. P. Stoykovich, and A. E. Saunders, “Solvent-dependent surface plasmon response and oxidation of copper nanocrystals,” J. Phys. Chem. C 115, 1793–1799(2011).
[CrossRef]

Wang, H.

H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

Wang, Q.-Q.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Westcott, S. L.

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
[CrossRef] [PubMed]

Wu, C.-K.

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
[CrossRef] [PubMed]

Xiao, S.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

Xu, H.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in Silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

Yang, W.

Yin, M.

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

Yoo, S. M.

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

Yoshikawa, H.

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

Yu, X. P.

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403–409 (2007).
[CrossRef]

Zhang, J. Z.

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010).
[CrossRef]

Zhang, L.

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113, 20896–20902 (2009).
[CrossRef]

Zhao, J.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007).
[CrossRef]

Zhu, J.

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005).
[CrossRef]

Zhu, Y.

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

Zhuo, Y.

Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
[CrossRef]

Zou, X.-W.

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007).
[CrossRef]

Adv. Mater. (1)

Z. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires,” Adv. Mater. 15, 303–305 (2003).
[CrossRef]

Anal. Chem. (1)

D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009).
[CrossRef]

Comput. Phys. Commun. (1)

O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354(2009).
[CrossRef]

Eur. Phys. J. B (1)

L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403–409 (2007).
[CrossRef]

Eur. Phys. J. D (1)

N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002).
[CrossRef]

J. Am. Chem. Soc. (2)

Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127, 1487–1492 (2005).
[CrossRef] [PubMed]

M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. B (1)

H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

J. Phys. Chem. C (3)

K. P. Rice, E. J. Walker, M. P. Stoykovich, and A. E. Saunders, “Solvent-dependent surface plasmon response and oxidation of copper nanocrystals,” J. Phys. Chem. C 115, 1793–1799(2011).
[CrossRef]

Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113, 20896–20902 (2009).
[CrossRef]

S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112, 19866–19871 (2008).
[CrossRef]

J. Phys. Chem. Lett. (1)

J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010).
[CrossRef]

J. Phys. D (1)

T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory,” J. Phys. D 42, 015308 (2009).
[CrossRef]

Mater. Lett. (1)

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005).
[CrossRef]

Nano Lett. (7)

Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007).
[CrossRef] [PubMed]

C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[CrossRef] [PubMed]

G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005).
[CrossRef] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008).
[CrossRef] [PubMed]

Nanotechnology (1)

J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007).
[CrossRef]

Nat. Biotechnol. (1)

P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47–52 (2004).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane,” Phys. Chem. Chem. Phys. 10, 5870–5874 (2008).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. E (1)

L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E 68, 066601 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in Silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002).
[CrossRef] [PubMed]

Plasmonics (2)

Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal–dielectric core–shell nanostructure,” Plasmonics 5, 311–318 (2010).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1997).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the studied Cu @ Cu 2 O structures, showing the impinging electromagnetic waves. E i and B i are the electric and magnetic fields, respectively, and k i is the wave vector.

Fig. 2
Fig. 2

Simulated extinction efficiency for a Cu @ Cu 2 O NP, having R t = 10.0 nm , while t Cu 2 O / R t varies between 0.0 and 1.0. For clarity, Q ext is presented for some selected values of t Cu 2 O / R t (a) and for the whole interval (b). The spectra shown in (a) correspond to the points marked with dashed lines in (b). Inset, intensity of the SPR peak versus t Cu 2 O / R t .

Fig. 3
Fig. 3

Simulated extinction efficiency for a Cu @ Cu 2 O structure with R t = 50.0 nm , while t Cu 2 O / R t varies between 0.0 and 1.0. For clarity, Q ext is presented for some selected values of t Cu 2 O / R t (a) and for the whole interval (b). The spectra shown in (a) correspond to the points marked with dashed lines in (b). Inset, intensity of the SPR peak versus t Cu 2 O / R t .

Fig. 4
Fig. 4

Local field contour plot in the section plane for a Cu NP with a radius of 10.0 nm (a) and Cu @ Cu 2 O NP with R Cu = 8.0 nm and R t = 10.0 nm (b). (c) The field profiles marked with dashed lines in the contour plots are also shown for clarity.

Fig. 5
Fig. 5

Simulated optical extinction spectra for a Cu NP with a radius of 50.0 nm (a) and Cu @ Cu 2 O NP with R Cu = 42.0 nm and R t = 50.0 nm (b), embedded in different media with increasing refractive indices (1.0–2.0). Insets, plots of SPR peak position λ SPR against the refractive index of the embedding medium.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E 1 = 9 ε Cu 2 O ε m ε Cu 2 O ε a 2 ε m ε b E 0 ( cos θ r ^ + sin θ θ ^ ) ,
E 2 = 3 ε m ε Cu 2 O ε a 2 ε m ε b E 0 { [ ( ε Cu + 2 ε Cu 2 O ) + 2 ( ε Cu ε Cu 2 O ) ( R Cu / r ) 3 ] cos θ r ^ + + [ ( ε Cu + 2 ε Cu 2 O ) ( ε Cu ε Cu 2 O ) ( R Cu / r ) 3 ] sin θ θ ^ } ,
E 3 = { 2 ε Cu 2 O ε a ε m ε b ε Cu 2 O ε a 2 ε m ε b ( R Cu 2 O r ) 3 + 1 } E 0 cos θ r ^ + { ε Cu 2 O ε a ε m ε b ε Cu 2 O ε a 2 ε m ε b ( R Cu 2 O r ) 3 1 } E 0 sin θ θ ^ ,
ε a = ε Cu ( 3 2 P ) + 2 ε Cu 2 O P ,
ε a = ε Cu P + ε Cu 2 O ( 3 P ) ,
P = 1 ( R Cu / R Cu 2 O ) 3 ,
FOM = Q ext SPR FWHM Δ λ SPR Δ n m ,

Metrics