Abstract

We report a compact fiber in-line Mach–Zehnder interferometer for refractive index sensing with high sensitivity and precise sensing location. One arm of the interferometer contains a microcavity formed by removing part of the fiber core near the core and cladding interface by femtosecond laser micromachining, and the other arm remains in line with the remaining part of the fiber core. Such a fiber in-line Mach-Zehnder interferometer exhibits an extremely high refractive-index-sensitivity of 9370nm/RIU (refractive index unit) within the refractive index range between 1.31 and 1.335.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
    [CrossRef]
  2. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  3. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15, 15848-15853 (2007).
    [CrossRef] [PubMed]
  4. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  5. D. W. Kin, Y. Zhang, K. L. Cooper, and A. Wang, “In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement,” Appl. Opt. 44, 5368-5373 (2005).
    [CrossRef]
  6. D. W. Kim, F. Shen, X. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30, 3000-3002 (2005).
    [CrossRef] [PubMed]
  7. G. P. Agrawal, Lightwave Technology: Components and Devices, Wiley & Sons, 2004).
  8. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
    [CrossRef] [PubMed]
  9. R. Slavík, J. Homola, J. Čtyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
    [CrossRef]
  10. V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609-7614 (2005).
    [CrossRef] [PubMed]
  11. B. H. Lee and J. Nishii, “Dependence of fringe spacing on the grating separation in a long-period fiber grating pair,” Appl. Opt. 38, 3450-3459 (1999).
    [CrossRef]
  12. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29, 346-348 (2004).
    [CrossRef] [PubMed]
  13. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711-5720 (2007).
    [CrossRef] [PubMed]
  14. J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
    [CrossRef]
  15. Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
    [CrossRef]
  16. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
    [CrossRef]
  17. C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
    [CrossRef] [PubMed]
  18. P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
    [CrossRef]
  19. C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
    [CrossRef]
  20. Y. Lai, K. Zhou, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31, 2559-2661 (2006).
    [CrossRef] [PubMed]
  21. Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, “Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining,” Opt. Lett. 34, 3328-3330 (2009).
    [CrossRef] [PubMed]
  22. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123-14128 (2007).
    [CrossRef] [PubMed]
  23. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008).
    [CrossRef] [PubMed]
  24. P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990).
    [CrossRef]
  25. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]

2009 (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, “Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining,” Opt. Lett. 34, 3328-3330 (2009).
[CrossRef] [PubMed]

2008 (5)

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008).
[CrossRef] [PubMed]

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

2007 (3)

2006 (2)

Y. Lai, K. Zhou, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31, 2559-2661 (2006).
[CrossRef] [PubMed]

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

2005 (5)

2004 (2)

2001 (2)

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

R. Slavík, J. Homola, J. Čtyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

1999 (1)

1996 (1)

1990 (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Lightwave Technology: Components and Devices, Wiley & Sons, 2004).

Andreev, A.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Barnes, J.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

Bennion, I.

Bhatia, V.

Bock, W.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

Bolger, J.

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

Bolger, J. A.

Brynda, E.

R. Slavík, J. Homola, J. Čtyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Calixto, S.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Chen, X.

Cheng, G. H.

Choi, H. Y.

Collins, M.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

Cooper, K. L.

Cooper-White, J.

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
[CrossRef] [PubMed]

Cronin-Golomb, M.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

Ctyroky, J.

R. Slavík, J. Homola, J. Čtyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Deng, M.

Domachuk, P.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
[CrossRef] [PubMed]

Duan, D. W.

Ecke, W.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
[CrossRef] [PubMed]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Fan, X. D.

Fraser, J. M.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Greig, P.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

Grillet, C.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
[CrossRef] [PubMed]

Han, Y.

Homola, J.

R. Slavík, J. Homola, J. Čtyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Hong, W.

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Jang, H. S.

Kim, D. W.

Kim, J. C.

Kim, M. J.

Kin, D. W.

Lai, Y.

Lee, B. H.

Lee, K. S.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Levelt Sengers, J. M. H.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Li, Y.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Lim, J. H.

Loock, H.-P.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Y. Wang, D. N. Wang, M. Yang, W. Hong, and P. Lu, “Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining,” Opt. Lett. 34, 3328-3330 (2009).
[CrossRef] [PubMed]

Mägi, E.

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
[CrossRef] [PubMed]

Mahmud, T.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609-7614 (2005).
[CrossRef] [PubMed]

Mitchell, A.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

Monzón-Hernández, D.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609-7614 (2005).
[CrossRef] [PubMed]

Mueller, R.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Mutzenich, S.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

Nishii, J.

Oleschuk, R. D.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

Rao, Y. J.

Rodd, L.

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
[CrossRef] [PubMed]

Rosengarten, G.

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Shen, F.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Shroeder, K.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Slavík, R.

R. Slavík, J. Homola, J. Čtyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Sotskaya, L. I.

Sotsky, A. B.

Straub, J.

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Sugden, K.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Ta'eed, V.

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
[CrossRef] [PubMed]

Tian, Z.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

Tsai, H. L.

Vengsarkar, A. M.

Villatoro, J.

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609-7614 (2005).
[CrossRef] [PubMed]

Wang, A.

Wang, D. N.

Wang, Y.

Wei, T.

White, I. M.

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Willsch, R.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Xiao, H.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yam, S. S.-H.

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

Yang, M.

Yang, X. C.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Zhang, L.

Zhang, Y.

Zhou, K.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Zhu, T.

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8-26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Microfluidic interferometer,” Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18, 1258-1260 (2006).
[CrossRef]

Z. Tian, S. S.-H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photon. Technol. Lett. 20, 626-628 (2008).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. Levelt Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677-717 (1990).
[CrossRef]

Meas. Sci. Technol. (1)

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Microfluid. Nanofluid. (1)

C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid. 4, 81-95 (2008).
[CrossRef]

Opt. Express (7)

V. P. Minkovich, J. Villatoro, D. Monzón-Hernández, S. Calixto, A. B. Sotsky, and L. I. Sotskaya, “Holey fiber tapers with resonance transmission for high-resolution refractive index sensing,” Opt. Express 13, 7609-7614 (2005).
[CrossRef] [PubMed]

C. Grillet, P. Domachuk, V. Ta'eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12, 5440-5447 (2004).
[CrossRef] [PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711-5720 (2007).
[CrossRef] [PubMed]

Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15, 14123-14128 (2007).
[CrossRef] [PubMed]

K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15, 15848-15853 (2007).
[CrossRef] [PubMed]

I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16, 5764-5769 (2008).
[CrossRef] [PubMed]

Opt. Lett. (5)

Sens. Actuators B (1)

R. Slavík, J. Homola, J. Čtyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106-111 (2001).
[CrossRef]

Other (1)

G. P. Agrawal, Lightwave Technology: Components and Devices, Wiley & Sons, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. CCD, charge-coupled device camera; W, half-wave plate; P, polarizer; BS, beam splitter; MO, microscopic objective; BBS, broadband light source; OSA, optical spectrum analyzer; XYZ Stage, computer-controlled three-dimensional translation stage.

Fig. 2
Fig. 2

In-line fiber MZI fabricated by use of femtosecond laser pulse irradiation. (a) Schematic of the structure (top view). D represents the removed size of fiber core; L is the cavity length; I in m and I out m ( m = 1 , 2 ) are the input and output optical intensities propagated in the fiber core and microcavity, respectively. (b) Optical microscopic image of the microcavity (side view). (c) SEM image of the microcavity; the dashed white circle indicates the fiber core (cross-section view).

Fig. 3
Fig. 3

Interference spectra of the in-line fiber MZI. (a) Transmission spectra. (b) Wavelength shift versus the RI filled in the microcavity.

Fig. 4
Fig. 4

Wavelength shift of the in-line fiber MZI with water filled in the microcavity. Water temperature is varied between 30 and 60 ° C .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = I out 1 + I out 2 + 2 I out 1 I out 2 cos ( 2 π L Δ n λ + φ 0 ) ,
2 π L Δ n λ m + φ 0 = ( 2 m + 1 ) π ,
d λ d ( Δ n ) = λ Δ n .
FSR = λ 2 Δ n L ,

Metrics