Abstract

In this paper, we describe the Z-scan measurements of the two-photon absorption (TPA) cross section of various two-photon initiators that are suitable for real three-dimensional structuring of photo-polymerizable formulation. The value of the TPA cross section for the initiator P3K was measured to be 256 GM as the maximum value among the synthesized initiators. Procedures for a precise Z-scan measurement including the measurement of Rayleigh length and beam waist radius are presented. The effect of the pulse width on the Z-scan signal is demonstrated. We also used a flow-cell geometry instead of a static cell in order to refresh the materials to avoid the decomposition of the molecules. This resulted in a more realistic TPA cross section which has been proven by suitable reference compounds.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
    [CrossRef]
  2. T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
    [CrossRef]
  3. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994).
    [CrossRef]
  4. L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).
  5. C. C. Corredor, Z. L. Huang, and K. D. Belfield, “Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene,” Adv. Mater. 18, 2910–2914 (2006).
    [CrossRef]
  6. R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
    [CrossRef]
  7. K. Ogawa and Y. Kobuke, “Recent advances in two-photon photodynamic therapy,” Anti-Cancer Agents in Medical Chemistry 8, 269–279 (2008).
    [CrossRef]
  8. S. Quentmeier, S. Denicke, and K. H. Gericke, “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19, 1037–1043 (2009).
    [CrossRef] [PubMed]
  9. L. Antonov, K. Kamada, K. Ohta, and F. S. Kamounah, “A systematic femtosecond study on the two-photon absorbing D-π-Amolecules-π-bridge nitrogen insertion and strength of the donor and acceptor groups,” Phys. Chem. Chem. Phys. 5, 1193–1197 (2003).
    [CrossRef]
  10. G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780–880 nm,” J. Chem. Phys. 126, 025102 (2007).
    [CrossRef] [PubMed]
  11. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
    [CrossRef]
  12. J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996).
    [CrossRef]
  13. Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
    [CrossRef]
  14. A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
    [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.
  16. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  17. H. Ma and C. B. De Araujo, “Two-color Z-scan technique with enhanced sensitivity,” Appl. Phys. Lett. 66, 1581–1583 (1995).
    [CrossRef]
  18. T. Xia, D. I. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994).
    [CrossRef] [PubMed]
  19. D. V. Petrov, A. S. L. Gomes, and C. B. De Araujo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
    [CrossRef]
  20. S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
    [CrossRef]
  21. A. I. Ryasnyansky and B. Palpant, “Theoretical investigation of the off-axis z-scan technique for nonlinear optical refraction measurement,” Appl. Opt. 45, 2773–2776 (2006).
    [CrossRef] [PubMed]
  22. J. M. Menard, M. Betz, I. Sigal, and H. M. Van Driel, “Single-beam differential z-scan technique,” Appl. Opt. 46, 2119–2122 (2007).
    [CrossRef] [PubMed]
  23. N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
    [CrossRef]
  24. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16, 4029–4047 (2008).
    [CrossRef] [PubMed]
  25. B. A. Reinhardt, “Two-photon technology: New materials and evolving applications,” Photonics Sci. News 4, 21–33 (1999).
  26. A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
    [CrossRef]
  27. T. F. Johnston, Jr., “Beam propagation (M2) measurement made as easy as it gets: The four-cuts method,” Appl. Opt. 37, 4840–4850 (1998).
    [CrossRef]
  28. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
    [CrossRef]
  29. L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002).
    [CrossRef]
  30. R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007).
    [CrossRef]
  31. U. Gubler and C. Bosshard, “Molecular design for third-order nonlinear optics,” Adv. Polym. Sci. 158, 123–191 (2002).
    [CrossRef]

2009 (3)

S. Quentmeier, S. Denicke, and K. H. Gericke, “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19, 1037–1043 (2009).
[CrossRef] [PubMed]

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
[CrossRef]

2008 (3)

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16, 4029–4047 (2008).
[CrossRef] [PubMed]

K. Ogawa and Y. Kobuke, “Recent advances in two-photon photodynamic therapy,” Anti-Cancer Agents in Medical Chemistry 8, 269–279 (2008).
[CrossRef]

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

2007 (4)

R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
[CrossRef]

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780–880 nm,” J. Chem. Phys. 126, 025102 (2007).
[CrossRef] [PubMed]

J. M. Menard, M. Betz, I. Sigal, and H. M. Van Driel, “Single-beam differential z-scan technique,” Appl. Opt. 46, 2119–2122 (2007).
[CrossRef] [PubMed]

R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007).
[CrossRef]

2006 (3)

A. I. Ryasnyansky and B. Palpant, “Theoretical investigation of the off-axis z-scan technique for nonlinear optical refraction measurement,” Appl. Opt. 45, 2773–2776 (2006).
[CrossRef] [PubMed]

C. C. Corredor, Z. L. Huang, and K. D. Belfield, “Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene,” Adv. Mater. 18, 2910–2914 (2006).
[CrossRef]

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

2005 (1)

L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).

2003 (2)

L. Antonov, K. Kamada, K. Ohta, and F. S. Kamounah, “A systematic femtosecond study on the two-photon absorbing D-π-Amolecules-π-bridge nitrogen insertion and strength of the donor and acceptor groups,” Phys. Chem. Chem. Phys. 5, 1193–1197 (2003).
[CrossRef]

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

2002 (3)

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002).
[CrossRef]

U. Gubler and C. Bosshard, “Molecular design for third-order nonlinear optics,” Adv. Polym. Sci. 158, 123–191 (2002).
[CrossRef]

2000 (1)

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

1999 (2)

B. A. Reinhardt, “Two-photon technology: New materials and evolving applications,” Photonics Sci. News 4, 21–33 (1999).

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[CrossRef]

1998 (1)

1996 (2)

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481–491 (1996).
[CrossRef]

J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996).
[CrossRef]

1995 (1)

H. Ma and C. B. De Araujo, “Two-color Z-scan technique with enhanced sensitivity,” Appl. Phys. Lett. 66, 1581–1583 (1995).
[CrossRef]

1994 (3)

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Ajami, A.

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Antonov, L.

L. Antonov, K. Kamada, K. Ohta, and F. S. Kamounah, “A systematic femtosecond study on the two-photon absorbing D-π-Amolecules-π-bridge nitrogen insertion and strength of the donor and acceptor groups,” Phys. Chem. Chem. Phys. 5, 1193–1197 (2003).
[CrossRef]

L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002).
[CrossRef]

Bashir, S.

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Belfield, K. D.

C. C. Corredor, Z. L. Huang, and K. D. Belfield, “Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene,” Adv. Mater. 18, 2910–2914 (2006).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Betz, M.

Bhawalkar, J. D.

J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996).
[CrossRef]

Bindra, K. S.

R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007).
[CrossRef]

Bisht, P. B.

R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007).
[CrossRef]

Bosshard, C.

U. Gubler and C. Bosshard, “Molecular design for third-order nonlinear optics,” Adv. Polym. Sci. 158, 123–191 (2002).
[CrossRef]

Brown, H.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Cai, L.

L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).

Chichkov, B. N.

R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
[CrossRef]

Chung, S. J.

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

Clay, G. O.

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780–880 nm,” J. Chem. Phys. 126, 025102 (2007).
[CrossRef] [PubMed]

Corredor, C. C.

C. C. Corredor, Z. L. Huang, and K. D. Belfield, “Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene,” Adv. Mater. 18, 2910–2914 (2006).
[CrossRef]

Creekmore, L.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Creekmore, S.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Dai, Q. X.

L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).

De Araujo, C. B.

H. Ma and C. B. De Araujo, “Two-color Z-scan technique with enhanced sensitivity,” Appl. Phys. Lett. 66, 1581–1583 (1995).
[CrossRef]

D. V. Petrov, A. S. L. Gomes, and C. B. De Araujo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

Declerck, P.

R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
[CrossRef]

Deng, X.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[CrossRef]

Denicke, S.

S. Quentmeier, S. Denicke, and K. H. Gericke, “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19, 1037–1043 (2009).
[CrossRef] [PubMed]

Drobizhev, M.

Fan, X. Z.

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Gericke, K. H.

S. Quentmeier, S. Denicke, and K. H. Gericke, “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19, 1037–1043 (2009).
[CrossRef] [PubMed]

Gescheidt, G.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
[CrossRef]

Gomes, A. S. L.

D. V. Petrov, A. S. L. Gomes, and C. B. De Araujo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

Griesser, M.

A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
[CrossRef]

Gu, B.

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Gubler, U.

U. Gubler and C. Bosshard, “Molecular design for third-order nonlinear optics,” Adv. Polym. Sci. 158, 123–191 (2002).
[CrossRef]

Guo, S. L.

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Hagan, D. I.

Hagan, D. J.

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.

He, G. S.

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996).
[CrossRef]

Houbertz, R.

R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
[CrossRef]

Huang, Z. L.

C. C. Corredor, Z. L. Huang, and K. D. Belfield, “Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene,” Adv. Mater. 18, 2910–2914 (2006).
[CrossRef]

Husinsky, W.

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Inführ, R.

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Iskra, K.

A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
[CrossRef]

Jackson, A.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Johnston, T. F.

Jung, S.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Kamada, K.

L. Antonov, K. Kamada, K. Ohta, and F. S. Kamounah, “A systematic femtosecond study on the two-photon absorbing D-π-Amolecules-π-bridge nitrogen insertion and strength of the donor and acceptor groups,” Phys. Chem. Chem. Phys. 5, 1193–1197 (2003).
[CrossRef]

L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002).
[CrossRef]

Kamounah, F. S.

L. Antonov, K. Kamada, K. Ohta, and F. S. Kamounah, “A systematic femtosecond study on the two-photon absorbing D-π-Amolecules-π-bridge nitrogen insertion and strength of the donor and acceptor groups,” Phys. Chem. Chem. Phys. 5, 1193–1197 (2003).
[CrossRef]

Kim, K. S.

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

Kleinfeld, D.

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780–880 nm,” J. Chem. Phys. 126, 025102 (2007).
[CrossRef] [PubMed]

Kobuke, Y.

K. Ogawa and Y. Kobuke, “Recent advances in two-photon photodynamic therapy,” Anti-Cancer Agents in Medical Chemistry 8, 269–279 (2008).
[CrossRef]

Li, C.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[CrossRef]

Lichtenegger, H.

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Lin, T. C.

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

Liska, R.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
[CrossRef]

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Liu, J.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Liu, L. P.

L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).

Liu, S.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[CrossRef]

Liu, Y.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Lüftenegger, St.

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Ma, H.

H. Ma and C. B. De Araujo, “Two-color Z-scan technique with enhanced sensitivity,” Appl. Phys. Lett. 66, 1581–1583 (1995).
[CrossRef]

Ma, S. M.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Makarov, N. S.

Menard, J. M.

Ming, N. B.

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Namkung, M.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Oak, S. M.

R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007).
[CrossRef]

Ogawa, K.

K. Ogawa and Y. Kobuke, “Recent advances in two-photon photodynamic therapy,” Anti-Cancer Agents in Medical Chemistry 8, 269–279 (2008).
[CrossRef]

Ohta, K.

L. Antonov, K. Kamada, K. Ohta, and F. S. Kamounah, “A systematic femtosecond study on the two-photon absorbing D-π-Amolecules-π-bridge nitrogen insertion and strength of the donor and acceptor groups,” Phys. Chem. Chem. Phys. 5, 1193–1197 (2003).
[CrossRef]

L. Antonov, K. Kamada, and K. Ohta, “Estimation of two-photon absorption characteristics by a global fitting procedure,” Appl. Spectrosc. 56, 1508–1511 (2002).
[CrossRef]

Ovsianikov, A.

R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
[CrossRef]

Palpant, B.

Pan, C. P.

L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).

Passinger, S.

R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
[CrossRef]

Petrov, D. V.

D. V. Petrov, A. S. L. Gomes, and C. B. De Araujo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

Prasad, P. N.

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996).
[CrossRef]

Pucher, N.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
[CrossRef]

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Pudavar, H. E.

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

Quentmeier, S.

S. Quentmeier, S. Denicke, and K. H. Gericke, “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19, 1037–1043 (2009).
[CrossRef] [PubMed]

Rafique, M. S.

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Rebane, A.

Reinhardt, B. A.

B. A. Reinhardt, “Two-photon technology: New materials and evolving applications,” Photonics Sci. News 4, 21–33 (1999).

Ren, X.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Rosspeintner, A.

A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
[CrossRef]

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

Ryasnyansky, A. I.

Said, A. A.

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.

Sailaja, R.

R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007).
[CrossRef]

Satzinger, V.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

Schafer, K. J.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Schaffer, C. B.

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780–880 nm,” J. Chem. Phys. 126, 025102 (2007).
[CrossRef] [PubMed]

Schmidt, V.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

Seo, J.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Serbin, J.

R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
[CrossRef]

Sheik-Bahae, M.

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994).
[CrossRef]

T. Xia, D. I. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.

Sigal, I.

Singh, C. P.

R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007).
[CrossRef]

Skyles, T.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Soileau, M. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.

Song, Y.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[CrossRef]

Stampfl, J.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Swiatkiewicz, J.

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

Tabibi, B.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Tan, G.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Van Driel, H. M.

Van Stryland, E. W.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994).
[CrossRef]

T. Xia, D. I. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.

Wang, H.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Wang, H. T.

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Wang, J.

Wang, X.

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

Wang, Y.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[CrossRef]

Webb, W. W.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.

Wei, T. -H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Xia, T.

Xu, C.

Xu, L.

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Yan, J.

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

Yang, Q.

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Zhang, X.

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[CrossRef]

Zhou, M.

L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).

Adv. Mater. (1)

C. C. Corredor, Z. L. Huang, and K. D. Belfield, “Two-photon 3D optical data storage via fluorescence modulation of an efficient fluorene dye by a photochromic diarylethene,” Adv. Mater. 18, 2910–2914 (2006).
[CrossRef]

Adv. Polym. Sci. (2)

T. C. Lin, S. J. Chung, K. S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, “Organics and polymers with high two-photon activities and their applications,” Adv. Polym. Sci. 161, 157–193 (2003).
[CrossRef]

U. Gubler and C. Bosshard, “Molecular design for third-order nonlinear optics,” Adv. Polym. Sci. 158, 123–191 (2002).
[CrossRef]

Anti-Cancer Agents in Medical Chemistry (1)

K. Ogawa and Y. Kobuke, “Recent advances in two-photon photodynamic therapy,” Anti-Cancer Agents in Medical Chemistry 8, 269–279 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

H. Ma and C. B. De Araujo, “Two-color Z-scan technique with enhanced sensitivity,” Appl. Phys. Lett. 66, 1581–1583 (1995).
[CrossRef]

D. V. Petrov, A. S. L. Gomes, and C. B. De Araujo, “Reflection Z-scan technique for measurements of optical properties of surfaces,” Appl. Phys. Lett. 65, 1067–1069 (1994).
[CrossRef]

Appl. Spectrosc. (1)

Guangdian Gongcheng/Opto-Electronic Engineering (1)

L. P. Liu, M. Zhou, Q. X. Dai, C. P. Pan, and L. Cai, “Three-dimensional micro-fabrication by femtosecond laser,” Guangdian Gongcheng/Opto-Electronic Engineering 32, 93–96 (2005).

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Chem. Phys. (1)

G. O. Clay, C. B. Schaffer, and D. Kleinfeld, “Large two-photon absorptivity of hemoglobin in the infrared range of 780–880 nm,” J. Chem. Phys. 126, 025102 (2007).
[CrossRef] [PubMed]

J. Fluoresc. (1)

S. Quentmeier, S. Denicke, and K. H. Gericke, “Two-color two-photon fluorescence laser scanning microscopy,” J. Fluoresc. 19, 1037–1043 (2009).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A, Pure Appl. Opt. 4, 504–508 (2002).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Org. Chem. (1)

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, and E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

J. Phys.: Conf. Ser. (1)

Q. Yang, J. Seo, S. Creekmore, G. Tan, H. Brown, S. M. Ma, L. Creekmore, A. Jackson, T. Skyles, B. Tabibi, H. Wang, S. Jung, and M. Namkung, “Z-scan and four-wave mixing characterization of semiconductor cadmium chalcogenide nanomaterials,” J. Phys.: Conf. Ser. 38, 144–147 (2006).
[CrossRef]

Macromolecules (2)

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-a-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

A. Rosspeintner, M. Griesser, N. Pucher, K. Iskra, R. Liska, and G. Gescheidt, “Toward the photoinduced reactivity of 1,5-diphenylpenta-1,4-diyn-3-one (DPD): Real-time investigations by Magnetic resonance,” Macromolecules 42, 8034–8038 (2009).
[CrossRef]

Opt. Commun. (2)

R. Sailaja, P. B. Bisht, C. P. Singh, K. S. Bindra, and S. M. Oak, “Influence of multiphoton events in measurement of two-photon absorption cross-sections and optical nonlinear parameters under femtosecond pumping,” Opt. Commun. 277, 433–439 (2007).
[CrossRef]

X. Deng, X. Zhang, Y. Wang, Y. Song, S. Liu, and C. Li, “Intensity threshold in the conversion from reverse saturable absorption to saturable absorption and its application in optical limiting,” Opt. Commun. 168, 207–212 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Photonics Sci. News (1)

B. A. Reinhardt, “Two-photon technology: New materials and evolving applications,” Photonics Sci. News 4, 21–33 (1999).

Phys. Chem. Chem. Phys. (1)

L. Antonov, K. Kamada, K. Ohta, and F. S. Kamounah, “A systematic femtosecond study on the two-photon absorbing D-π-Amolecules-π-bridge nitrogen insertion and strength of the donor and acceptor groups,” Phys. Chem. Chem. Phys. 5, 1193–1197 (2003).
[CrossRef]

Phys. Status Solidi A (1)

R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov, “Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,” Phys. Status Solidi A 204, 3662–3675 (2007).
[CrossRef]

Proc. SPIE (1)

A. Ajami, M. S. Rafique, N. Pucher, S. Bashir, W. Husinsky, R. Liska, R. Inführ, H. Lichtenegger, J. Stampfl, and St. Lüftenegger, “Z-scan measurements of two-photon absorption for ultrashort laser radiation,” Proc. SPIE 7027, 70271H (2008).
[CrossRef]

Rep. Prog. Phys. (1)

J. D. Bhawalkar, G. S. He, and P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials,” Rep. Prog. Phys. 59, 1041–1070 (1996).
[CrossRef]

Other (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, and M. J. Soileau, “Sensitive n2 measurements using a single beam,” NIST Special Publication No. 801, (NIST, 1990), pp. 126–135.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the OA Z-scan setup.

Fig. 2
Fig. 2

Intensity spatial profile. (a) Transmission through a pinhole scanned orthogonal to the beam propagation direction (scattered points are the experimental data, and the solid line is the Gaussian fit to the experimental data). (b) 2D intensity profile. (c) 3D intensity profile. [Both (b) and (c) were taken by a beam profiler.]

Fig. 3
Fig. 3

(a) Beam radius versus the z position measured from the focal point. (b) Normalized transmittance through a 50 μ m diameter aperture versus the aperture position measured from the focal point.

Fig. 4
Fig. 4

Z-scans for Rhodamine B carried out with the same pulse energy but different pulse widths. Circle points represent experimental data obtained with 100 fs pulses, and square points represent experimental data obtained with 25 fs pulses.

Fig. 5
Fig. 5

Z-scans for P3K with the same 220 nJ pulses but for different flow rates (without any flow and with 5, 10, and 30 ml/h flow rates).

Fig. 6
Fig. 6

Z-scans for B3K performed with different pulse energies.

Fig. 7
Fig. 7

q 0 versus pulse energy for all samples.

Fig. 8
Fig. 8

Z-scan for M2K with 330 nJ pulses. Solid line represents the fit curve assuming z R = 0.7   mm .

Tables (2)

Tables Icon

Table 1 Beam Waist Radius Obtained by Different Methods

Tables Icon

Table 2 The TPA Cross Sections, the OPA Maxima, and the Extinction Coefficient for Reference Dyes in MeOH Solvent and Synthesized TPIs in THF as a Solvent at a Concentration of 1 × 10 2   M

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ = ω β N A ρ × 10 3 ( cm 4   s   photon 1 molecule 1 ) ,
T ( z ) = n = 0 ( q 0 ) n ( n + 1 ) 3 / 2 ( 1 + x 2 ) n ,
I 0 = 4 ln   2 π P Aver π ω 0 2 R τ = 4 ln   2 π P Aver M 2 λ z R R τ ,
P ( z , t ) = π ω 0 2 2 I 0 ( z , t ) ( 1 e 2 a 2 / ω ( z ) 2 ) ,
ω ( z ) 2 = ω 0 2 ( 1 + z 2 z R 2 ) .
T Norm ( z ) = 1 e 2 a 2 / ω ( z ) 2 1 e 2 a 2 / ω 0 2 .

Metrics