Abstract

Dielectric microspheres illuminated by a tightly focused Gaussian beam can focus light on a tiny spot with subwavelength dimensions along the three directions of space. We report here a detailed experimental and theoretical study of the interaction between a single fluorescent molecule and this peculiar electromagnetic distribution. The microsphere increases the excitation intensity sensed by the molecule up to a factor of 2.2, while at the same time it allows for a collection efficiency of up to 60% by redirecting the light emitted at large incidences toward the optical axis. By combining these two effects, the number of collected fluorescence photons can be increased up to a factor of 5. We quantify the evolution of the excitation and collection contributions with the microsphere dimensions and compare our experimental findings with numerical simulations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
    [CrossRef]
  2. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
    [CrossRef] [PubMed]
  3. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
    [CrossRef]
  4. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  5. R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, “Radiative and non-radiative decay of a single-molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
    [CrossRef]
  6. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607-1615 (1977).
    [CrossRef]
  7. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615-1619 (1977).
    [CrossRef]
  8. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 91-104 (1997).
    [CrossRef]
  9. J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38, 724-732 (1999).
    [CrossRef]
  10. T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117-2123 (2000).
    [CrossRef] [PubMed]
  11. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906-1913 (2000).
    [CrossRef]
  12. J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
    [CrossRef]
  13. K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999).
    [CrossRef]
  14. A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
    [CrossRef] [PubMed]
  15. R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007).
    [CrossRef]
  16. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297-15303 (2008).
    [CrossRef] [PubMed]
  17. A. Devilez, N. Bonod, B. Stout, D. Gérard, J. Wenger, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of photonic nanojets,” Opt. Express 17, 2089-2094 (2009).
    [CrossRef] [PubMed]
  18. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214-1220 (2004).
    [CrossRef] [PubMed]
  19. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
    [CrossRef]
  20. P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930-6940 (2008).
    [CrossRef] [PubMed]
  21. J. Wenger, D. Gérard, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, O. Mahboub, and T. W. Ebbesen, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008-3020 (2008).
    [CrossRef] [PubMed]
  22. C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution--Methods and Applications (VCH-Wiley, 2002).
    [CrossRef]
  23. W. W. Webb, “Fluorescence correlation spectroscopy: inception, biophysical experimentations, and prospectus,” Appl. Opt. 40, 3969-3983 (2001).
    [CrossRef]
  24. B. Stout, M. Nevière, and E. Popov, “Light diffraction by a three-dimensional object: differential theory,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22, 2385-2404 (2005).
    [CrossRef] [PubMed]
  25. E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
    [CrossRef] [PubMed]
  26. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200-14212 (2008).
    [CrossRef] [PubMed]
  27. J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32, 203-214 (2003).
    [CrossRef] [PubMed]
  28. J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800-6804 (2008).
    [CrossRef] [PubMed]
  29. A. Desmedt, D. Talaga, and J.-L. Bruneel, “Enhancement of the Raman scattering signal due to a nanolens effect,” Appl. Spectrosc. 61, 621-623 (2007).
    [CrossRef] [PubMed]
  30. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
    [CrossRef] [PubMed]
  31. S. Li, C. Du, X. Dong, L. Shi, X. Luo, X. Wei, and Y. Zhang, “Superlens nano-patterning technology based on the distributed polystyrene spheres,” Opt. Express 16, 14397-14403 (2008).
    [CrossRef] [PubMed]
  32. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713-13719 (2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (10)

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297-15303 (2008).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930-6940 (2008).
[CrossRef] [PubMed]

J. Wenger, D. Gérard, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, O. Mahboub, and T. W. Ebbesen, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008-3020 (2008).
[CrossRef] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200-14212 (2008).
[CrossRef] [PubMed]

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800-6804 (2008).
[CrossRef] [PubMed]

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
[CrossRef] [PubMed]

S. Li, C. Du, X. Dong, L. Shi, X. Luo, X. Wei, and Y. Zhang, “Superlens nano-patterning technology based on the distributed polystyrene spheres,” Opt. Express 16, 14397-14403 (2008).
[CrossRef] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713-13719 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Desmedt, D. Talaga, and J.-L. Bruneel, “Enhancement of the Raman scattering signal due to a nanolens effect,” Appl. Spectrosc. 61, 621-623 (2007).
[CrossRef] [PubMed]

R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007).
[CrossRef]

2006 (4)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, “Radiative and non-radiative decay of a single-molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

2005 (2)

B. Stout, M. Nevière, and E. Popov, “Light diffraction by a three-dimensional object: differential theory,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22, 2385-2404 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214-1220 (2004).
[CrossRef] [PubMed]

2003 (1)

J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32, 203-214 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B 17, 1906-1913 (2000).
[CrossRef]

1999 (2)

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38, 724-732 (1999).
[CrossRef]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

1997 (1)

L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 91-104 (1997).
[CrossRef]

1977 (2)

Akiyama, H.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Anhut, T.

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Aouani, H.

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800-6804 (2008).
[CrossRef] [PubMed]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
[CrossRef] [PubMed]

Baba, M.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

Backman, V.

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Bonod, N.

Bruneel, J. -L.

Brunner, R.

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, “Radiative and non-radiative decay of a single-molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Chaumet, P.

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
[CrossRef] [PubMed]

Chen, Z.

Desmedt, A.

Devilez, A.

Dintinger, J.

J. Wenger, D. Gérard, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, O. Mahboub, and T. W. Ebbesen, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008-3020 (2008).
[CrossRef] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
[CrossRef] [PubMed]

Dong, X.

Du, C.

Ebbesen, T. W.

J. Wenger, D. Gérard, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, O. Mahboub, and T. W. Ebbesen, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008-3020 (2008).
[CrossRef] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
[CrossRef] [PubMed]

Enderlein, J.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38, 724-732 (1999).
[CrossRef]

C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution--Methods and Applications (VCH-Wiley, 2002).
[CrossRef]

Epstein, J. R.

J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32, 203-214 (2003).
[CrossRef] [PubMed]

Ferrand, P.

Fort, E.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

Gachet, D.

Gérard, D.

Gösch, M.

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Greffet, J. -J.

R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, “Radiative and non-radiative decay of a single-molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Grésillon, S.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

Heifetz, A.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, “Radiative and non-radiative decay of a single-molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Jung, S.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

Keller, R. A.

C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution--Methods and Applications (VCH-Wiley, 2002).
[CrossRef]

Kong, S. -C.

Koyama, K.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

Kunz, R. E.

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

Lasser, T.

R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007).
[CrossRef]

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Leitgeb, R. A.

R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007).
[CrossRef]

Lenne, P. -F.

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
[CrossRef] [PubMed]

Li, S.

Li, X.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Lukosz, W.

Luo, X.

Mahboub, O.

Martin, D.

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

McLeod, E.

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
[CrossRef] [PubMed]

Mertz, J.

Mitic, J.

R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007).
[CrossRef]

Nevière, M.

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
[CrossRef] [PubMed]

B. Stout, M. Nevière, and E. Popov, “Light diffraction by a three-dimensional object: differential theory,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22, 2385-2404 (2005).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 91-104 (1997).
[CrossRef]

Pianta, M.

Popov, E.

A. Devilez, N. Bonod, B. Stout, D. Gérard, J. Wenger, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of photonic nanojets,” Opt. Express 17, 2089-2094 (2009).
[CrossRef] [PubMed]

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297-15303 (2008).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930-6940 (2008).
[CrossRef] [PubMed]

J. Wenger, D. Gérard, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, O. Mahboub, and T. W. Ebbesen, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008-3020 (2008).
[CrossRef] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200-14212 (2008).
[CrossRef] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
[CrossRef] [PubMed]

B. Stout, M. Nevière, and E. Popov, “Light diffraction by a three-dimensional object: differential theory,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22, 2385-2404 (2005).
[CrossRef] [PubMed]

Rao, R.

R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007).
[CrossRef]

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Ries, J.

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

Rigler, R.

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Rigneault, H.

Ruckstuhl, T.

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38, 724-732 (1999).
[CrossRef]

Sahakian, A.

Sahakian, A. V.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Schwille, P.

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

Seeger, S.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

J. Enderlein, T. Ruckstuhl, and S. Seeger, “Highly efficient optical detection of surface-generated fluorescence,” Appl. Opt. 38, 724-732 (1999).
[CrossRef]

Serov, A.

R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007).
[CrossRef]

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Shi, L.

Stout, B.

Suemoto, T.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

Taflove, A.

Talaga, D.

Verdes, D.

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

Vigoureux, J. -M.

R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, “Radiative and non-radiative decay of a single-molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Walt, D. R.

J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32, 203-214 (2003).
[CrossRef] [PubMed]

Webb, W. W.

Wei, X.

Wenger, J.

Yoshita, M.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

Zander, C.

C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution--Methods and Applications (VCH-Wiley, 2002).
[CrossRef]

Zhang, Y.

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

Anal. Chem. (2)

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from single molecules,” Anal. Chem. 72, 2117-2123 (2000).
[CrossRef] [PubMed]

J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres,” Anal. Chem. 80, 6800-6804 (2008).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, and H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667-1669 (1999).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Biophys. J. (1)

J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

A. Serov, R. Rao, M. Gösch, T. Anhut, D. Martin, R. Brunner, R. Rigler, and T. Lasser, “High light field confinement for fluorescent correlation spectroscopy using a solid immersion lens,” Biosens. Bioelectron. 20, 431-435 (2004).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

J. R. Epstein and D. R. Walt, “Fluorescence-based fibre optic arrays: a universal platform for sensing,” Chem. Soc. Rev. 32, 203-214 (2003).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661-699 (1998).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A Opt. Image Sci. Vis. (3)

L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 91-104 (1997).
[CrossRef]

B. Stout, M. Nevière, and E. Popov, “Light diffraction by a three-dimensional object: differential theory,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22, 2385-2404 (2005).
[CrossRef] [PubMed]

E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. W. Ebbesen, “Field enhancement in single subwavelength apertures,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 2342-2348 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D 41, 013001 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008).
[CrossRef] [PubMed]

Opt. Commun. (2)

R. Carminati, J.-J. Greffet, C. Henkel, and J.-M. Vigoureux, “Radiative and non-radiative decay of a single-molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368-375 (2006).
[CrossRef]

R. Rao, J. Mitic, A. Serov, R. A. Leitgeb, and T. Lasser, “Field confinement with aberration correction for solid immersion lens based fluorescence correlation spectroscopy,” Opt. Commun. 271, 462-469 (2007).
[CrossRef]

Opt. Express (8)

D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297-15303 (2008).
[CrossRef] [PubMed]

A. Devilez, N. Bonod, B. Stout, D. Gérard, J. Wenger, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of photonic nanojets,” Opt. Express 17, 2089-2094 (2009).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214-1220 (2004).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, M. Pianta, H. Rigneault, A. Devilez, B. Stout, N. Bonod, and E. Popov, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930-6940 (2008).
[CrossRef] [PubMed]

J. Wenger, D. Gérard, N. Bonod, E. Popov, H. Rigneault, J. Dintinger, O. Mahboub, and T. W. Ebbesen, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16, 3008-3020 (2008).
[CrossRef] [PubMed]

S. Li, C. Du, X. Dong, L. Shi, X. Luo, X. Wei, and Y. Zhang, “Superlens nano-patterning technology based on the distributed polystyrene spheres,” Opt. Express 16, 14397-14403 (2008).
[CrossRef] [PubMed]

S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713-13719 (2008).
[CrossRef] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16, 14200-14212 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Other (1)

C. Zander, J. Enderlein, and R. A. Keller, Single-Molecule Detection in Solution--Methods and Applications (VCH-Wiley, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the experimental setup for confocal single molecule detection enhanced by a single microsphere (left panel) and numerical simulation of the electric field intensity distribution near a dielectric microsphere (diameter 2 μ m , refractive index 1.59) illuminated with a tightly focused Gaussian beam at λ = 633   nm with 1.2 NA (right panel, note the logarithmic scale). The outer medium refractive index is set to 1.33; the glass slide refractive index is 1.5.

Fig. 2
Fig. 2

(a) CRM versus excitation power for the different sphere diameters and for the reference solution. Dots: experimental data; solid curves: numerical fit using Eq. (1). (b) Fluorescence enhancement factors in the low excitation regime η F , low and at saturation η F , sat , as deduced from the numerical fits in (a).

Fig. 3
Fig. 3

Fluorescence lifetime measurements. Dots: experimental data; solid curves: numerical fits taking into account the resolution of the setup. The curves are horizontally shifted for clarity.

Fig. 4
Fig. 4

Contributions of (a) excitation and (b) collection enhancements close to a single microsphere (random dipole orientation). Markers are experimental data; curves result from numerical computation (see text).

Fig. 5
Fig. 5

Angular distribution of the fluorescence intensity of a molecule located at 100 nm above a 2 μ m polystyrene microsphere in water (red curve) for a dipole oriented along the Z axis (a) and averaged over all orientations (b). The nonfilled curves correspond to the dipole emission without the microsphere.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

CRM = κ ϕ σ I e 1 + I e / I s ,
CRM low = κ ϕ σ I e     ( I e I s ) ,
η F , low = η κ η ϕ η I e     ( I e I s ) ,
η F , sat = η κ η k rad     ( I e I s ) ,
η F , low = η κ η I e     ( I e I s ) ,
η F , sat = η κ     ( I e I s ) .
I V = V | E | 2 d V ,
V eff = ( V | E | 2 d V ) 2 V | E | 4 d V .

Metrics