Abstract

A systematic study of Bloch surface wave (BSW) properties and applications in diffraction-based biosensors is presented. The design of such devices starts with the calculation of the BSW dispersion relation for a semi-infinite one-dimensional photonic crystal. We propose an approach in which polarization and 1DPC termination effects are simply described. Since in a realistic device the number of periods is limited, we investigate the issues arising from finite size effects and the choice of a structure substrate. Diffraction efficiency is studied as a function index contrast, multilayer termination, grating thickness, and number of periods. Numerical examples for SiSiO2 and a-Si1xNx:H periodic dielectric stacks are presented, showing that BSW can be exploited for the realization of efficient diffraction-based biosensors from the infrared to the visible range.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).
    [CrossRef]
  2. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  3. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 72, 81R-89R (2000).
    [CrossRef] [PubMed]
  4. J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005).
    [CrossRef] [PubMed]
  5. M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
    [CrossRef]
  6. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  7. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610-7615 (2007).
    [CrossRef] [PubMed]
  8. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  9. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  10. M. Shin and W. M. Robertson, “Surface-plasmon like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360-364 (2005).
    [CrossRef]
  11. E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
    [CrossRef]
  12. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
    [CrossRef]
  13. S. Fine and W. P. Hansen, “Optical second harmonic generation in biological systems,” Appl. Opt. 10, 2350-2353 (1971).
    [CrossRef] [PubMed]
  14. A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
    [CrossRef]
  15. J. B. Goh, R. W. Loo, R. A. McAloney, and M. C. Goh, “Diffraction-based assay for detecting multiple analytes,” Anal. Bioanal. Chem. 374, 54-56 (2002).
    [CrossRef] [PubMed]
  16. H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
    [CrossRef]
  17. D. Angeley, J. Davis, and G. Reitz, “Fabrication of an optical-quality linear grating of immunoglobulin G proteins by microcontact printing and demonstration of potential biosensing applications,” Opt. Eng. (Bellingham) 45, 043402 (2006).
    [CrossRef]
  18. F. Yu and W. Knoll, “Immunosensor with self-referencing based on surface plasmon diffraction,” Anal. Chem. 76, 1971-1975 (2004).
    [CrossRef] [PubMed]
  19. F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76, 3530-3535 (2004).
    [CrossRef] [PubMed]
  20. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003).
  21. X. I. Saldana and G. Gonzalez de la Cruz, “Electromagnetic surface waves in semi-infinite superlattices,” J. Opt. Soc. Am. A 8, 36-40 (1991).
    [CrossRef]
  22. F. Villa, J. A. Gaspar-Armenta, and F. Raos-Mendieta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 216, 361-367 (2003).
    [CrossRef]
  23. S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005).
    [CrossRef]
  24. A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
    [CrossRef]
  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).
  26. M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
    [CrossRef]
  27. J. E. Sipe, “A new treatment of the growing wave problem in surface optics,” Solid State Commun. 39, 493-496 (1981).
    [CrossRef]
  28. S. A. Shakir and A. F. Turner, “Method of poles for multilayer thin-film waveguides,” Appl. Phys. A 29, 151-155 (1982).
    [CrossRef]
  29. C. B. Burckhardt, “Diffraction of a plane wave at a sinusoidally stratified dielectric grating,” J. Opt. Soc. Am. 56, 1502-1508 (1966).
    [CrossRef]
  30. C. B. Burckhardt, “Efficiency of a dielectric grating,” J. Opt. Soc. Am. 57, 601-603 (1967).
    [CrossRef]
  31. E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
    [CrossRef] [PubMed]
  32. C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
    [CrossRef]
  33. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610-2618 (1999).
    [CrossRef]
  34. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef] [PubMed]
  35. S. Darmawan and M. K. Chin, “Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator systems,” J. Opt. Soc. Am. B 23, 834-841 (2006).
    [CrossRef]
  36. J. H. Apfel, “Graphical method to design multilayer phase retarders,” Appl. Opt. 20, 1024-1029 (1981).
    [CrossRef] [PubMed]
  37. J. H. Apfel, “Phase retardance of periodic multilayer mirrors,” Appl. Opt. 21, 733-738 (1982).
    [CrossRef] [PubMed]
  38. M. Liscidini and L. C. Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E 73, 016613 (2006).
    [CrossRef]
  39. F. Villa, L. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett. 27, 646-648 (2002).
    [CrossRef]
  40. E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121, 319-321 (2006).
    [CrossRef]
  41. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104-106 (1978).
    [CrossRef]
  42. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800-1802 (1999).
    [CrossRef]
  43. A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
    [CrossRef]

2007 (7)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
[CrossRef] [PubMed]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610-7615 (2007).
[CrossRef] [PubMed]

2006 (7)

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

D. Angeley, J. Davis, and G. Reitz, “Fabrication of an optical-quality linear grating of immunoglobulin G proteins by microcontact printing and demonstration of potential biosensing applications,” Opt. Eng. (Bellingham) 45, 043402 (2006).
[CrossRef]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

M. Liscidini and L. C. Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E 73, 016613 (2006).
[CrossRef]

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121, 319-321 (2006).
[CrossRef]

S. Darmawan and M. K. Chin, “Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator systems,” J. Opt. Soc. Am. B 23, 834-841 (2006).
[CrossRef]

2005 (3)

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005).
[CrossRef] [PubMed]

M. Shin and W. M. Robertson, “Surface-plasmon like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005).
[CrossRef]

2004 (2)

F. Yu and W. Knoll, “Immunosensor with self-referencing based on surface plasmon diffraction,” Anal. Chem. 76, 1971-1975 (2004).
[CrossRef] [PubMed]

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76, 3530-3535 (2004).
[CrossRef] [PubMed]

2003 (2)

F. Villa, J. A. Gaspar-Armenta, and F. Raos-Mendieta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 216, 361-367 (2003).
[CrossRef]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

2002 (2)

F. Villa, L. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett. 27, 646-648 (2002).
[CrossRef]

J. B. Goh, R. W. Loo, R. A. McAloney, and M. C. Goh, “Diffraction-based assay for detecting multiple analytes,” Anal. Bioanal. Chem. 374, 54-56 (2002).
[CrossRef] [PubMed]

2001 (2)

H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
[CrossRef]

R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001).
[CrossRef]

2000 (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 72, 81R-89R (2000).
[CrossRef] [PubMed]

1999 (3)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800-1802 (1999).
[CrossRef]

1998 (1)

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
[CrossRef]

1997 (1)

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

1991 (1)

1982 (2)

J. H. Apfel, “Phase retardance of periodic multilayer mirrors,” Appl. Opt. 21, 733-738 (1982).
[CrossRef] [PubMed]

S. A. Shakir and A. F. Turner, “Method of poles for multilayer thin-film waveguides,” Appl. Phys. A 29, 151-155 (1982).
[CrossRef]

1981 (2)

J. E. Sipe, “A new treatment of the growing wave problem in surface optics,” Solid State Commun. 39, 493-496 (1981).
[CrossRef]

J. H. Apfel, “Graphical method to design multilayer phase retarders,” Appl. Opt. 20, 1024-1029 (1981).
[CrossRef] [PubMed]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104-106 (1978).
[CrossRef]

1971 (1)

1967 (1)

1966 (1)

Andreani, L. C.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

M. Liscidini and L. C. Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E 73, 016613 (2006).
[CrossRef]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Angeley, D.

D. Angeley, J. Davis, and G. Reitz, “Fabrication of an optical-quality linear grating of immunoglobulin G proteins by microcontact printing and demonstration of potential biosensing applications,” Opt. Eng. (Bellingham) 45, 043402 (2006).
[CrossRef]

Apfel, J. H.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Bachelot, R.

Baets, R.

Ballarini, V.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Bartolozzi, I.

Benyattou, T.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121, 319-321 (2006).
[CrossRef]

Bernard, A.

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
[CrossRef]

Biebuyck, H.

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
[CrossRef]

Bienstman, P.

Blaize, S.

Bosshard, H. R.

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
[CrossRef]

Boyd, R. W.

Bruno, G.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Burckhardt, C. B.

Campbell, C. T.

H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
[CrossRef]

Canino, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Cheng, B.

S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005).
[CrossRef]

Chin, M. K.

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104-106 (1978).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

Darmawan, S.

Davis, J.

D. Angeley, J. Davis, and G. Reitz, “Fabrication of an optical-quality linear grating of immunoglobulin G proteins by microcontact printing and demonstration of potential biosensing applications,” Opt. Eng. (Bellingham) 45, 043402 (2006).
[CrossRef]

De Vos, K.

Delamarche, E.

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
[CrossRef]

Descrovi, E.

E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
[CrossRef] [PubMed]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

DeSilva, A. P.

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

Dominici, L.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Dorofeenko, A. V.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

Erokhin, S. G.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

Fauchet, P. M.

Feng, S.

S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005).
[CrossRef]

Fine, S.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

Frascella, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Galli, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Gaspar-Armenta, J.

Gaspar-Armenta, J. A.

F. Villa, J. A. Gaspar-Armenta, and F. Raos-Mendieta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 216, 361-367 (2003).
[CrossRef]

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Geobaldo, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Gerace, D.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Gesuele, F.

E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
[CrossRef] [PubMed]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Giorgis, F.

E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
[CrossRef] [PubMed]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Goh, J. B.

J. B. Goh, R. W. Loo, R. A. McAloney, and M. C. Goh, “Diffraction-based assay for detecting multiple analytes,” Anal. Bioanal. Chem. 374, 54-56 (2002).
[CrossRef] [PubMed]

Goh, M. C.

J. B. Goh, R. W. Loo, R. A. McAloney, and M. C. Goh, “Diffraction-based assay for detecting multiple analytes,” Anal. Bioanal. Chem. 374, 54-56 (2002).
[CrossRef] [PubMed]

Gonzalez de la Cruz, G.

Granovsky, A. B.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

Guillermain, E.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121, 319-321 (2006).
[CrossRef]

Gunaratne, H. Q. N.

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

Gunnlaugson, T.

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

Hansen, W. P.

Heebner, J. E.

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
[CrossRef]

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Huxley, A. J. M.

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

Inoue, M.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

Irrera, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Knoll, W.

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76, 3530-3535 (2004).
[CrossRef] [PubMed]

F. Yu and W. Knoll, “Immunosensor with self-referencing based on surface plasmon diffraction,” Anal. Chem. 76, 1971-1975 (2004).
[CrossRef] [PubMed]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Lee, M. R.

Lerondel, G.

Lettieri, S.

E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
[CrossRef] [PubMed]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Li, Z.

S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005).
[CrossRef]

Liscidini, M.

E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
[CrossRef] [PubMed]

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
[CrossRef]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

M. Liscidini and L. C. Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E 73, 016613 (2006).
[CrossRef]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Lisyansky, A. A.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

Lo Savio, R.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Loo, R. W.

J. B. Goh, R. W. Loo, R. A. McAloney, and M. C. Goh, “Diffraction-based assay for detecting multiple analytes,” Anal. Bioanal. Chem. 374, 54-56 (2002).
[CrossRef] [PubMed]

Lopez-Ríos, T.

Losurdo, M.

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Lu, H. B.

H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
[CrossRef]

Lysenko, V.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121, 319-321 (2006).
[CrossRef]

Maddalena, P.

E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
[CrossRef] [PubMed]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800-1802 (1999).
[CrossRef]

McAloney, R. A.

J. B. Goh, R. W. Loo, R. A. McAloney, and M. C. Goh, “Diffraction-based assay for detecting multiple analytes,” Anal. Bioanal. Chem. 374, 54-56 (2002).
[CrossRef] [PubMed]

McCoy, C. P.

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

Merzlikin, A. M.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

Michel, B.

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
[CrossRef]

Michelotti, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Miritello, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Nenninger, G. G.

H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
[CrossRef]

Orobtchouk, R.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

Pang, C. X.

Patrini, M.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Perriat, P.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

Pillonnet, A.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

Politi, A.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Prasad, P. N.

P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

Priolo, F.

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

Rademacher, J. T.

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

Ramos-Mendieta, F.

Raos-Mendieta, F.

F. Villa, J. A. Gaspar-Armenta, and F. Raos-Mendieta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 216, 361-367 (2003).
[CrossRef]

Ratner, B. D.

H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
[CrossRef]

Regalado, L.

Reitz, G.

D. Angeley, J. Davis, and G. Reitz, “Fabrication of an optical-quality linear grating of immunoglobulin G proteins by microcontact printing and demonstration of potential biosensing applications,” Opt. Eng. (Bellingham) 45, 043402 (2006).
[CrossRef]

Ricciardi, C.

E. Descrovi, C. Ricciardi, F. Giorgis, G. Lerondel, S. Blaize, C. X. Pang, R. Bachelot, P. Royer, S. Lettieri, F. Gesuele, P. Maddalena, and M. Liscidini, “Field localization and enhanced second-harmonic generation in silicon-based microcavities,” Opt. Express 15, 4159-4167 (2007).
[CrossRef] [PubMed]

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

Rice, T. E.

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

Robertson, W. M.

M. Shin and W. M. Robertson, “Surface-plasmon like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800-1802 (1999).
[CrossRef]

Roux, S.

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

Royer, P.

Saarinen, J. J.

Saldana, X. I.

Sang, H.

S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005).
[CrossRef]

Schacht, E.

Schmid, H.

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
[CrossRef]

Sciacca, B.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Shakir, S. A.

S. A. Shakir and A. F. Turner, “Method of poles for multilayer thin-film waveguides,” Appl. Phys. A 29, 151-155 (1982).
[CrossRef]

Shin, M.

M. Shin and W. M. Robertson, “Surface-plasmon like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

Sipe, J. E.

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
[CrossRef]

J. J. Saarinen, S. M. Weiss, P. M. Fauchet, and J. E. Sipe, “Optical sensor based on resonant porous silicon structures,” Opt. Express 13, 3754-3764 (2005).
[CrossRef] [PubMed]

J. E. Sipe, “A new treatment of the growing wave problem in surface optics,” Solid State Commun. 39, 493-496 (1981).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

Tian, S.

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76, 3530-3535 (2004).
[CrossRef] [PubMed]

Turner, A. F.

S. A. Shakir and A. F. Turner, “Method of poles for multilayer thin-film waveguides,” Appl. Phys. A 29, 151-155 (1982).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

Villa, F.

F. Villa, J. A. Gaspar-Armenta, and F. Raos-Mendieta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 216, 361-367 (2003).
[CrossRef]

F. Villa, L. Regalado, F. Ramos-Mendieta, J. Gaspar-Armenta, and T. Lopez-Ríos, “Photonic crystal sensor based on surface waves for thin-film characterization,” Opt. Lett. 27, 646-648 (2002).
[CrossRef]

Vinogradov, A. P.

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

Weiss, S. M.

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 72, 81R-89R (2000).
[CrossRef] [PubMed]

Yao, D.

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76, 3530-3535 (2004).
[CrossRef] [PubMed]

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104-106 (1978).
[CrossRef]

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003).

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Yee, S. S.

H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104-106 (1978).
[CrossRef]

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003).

Yu, F.

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76, 3530-3535 (2004).
[CrossRef] [PubMed]

F. Yu and W. Knoll, “Immunosensor with self-referencing based on surface plasmon diffraction,” Anal. Chem. 76, 1971-1975 (2004).
[CrossRef] [PubMed]

Zhang, D.

S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005).
[CrossRef]

Anal. Bioanal. Chem. (2)

J. B. Goh, R. W. Loo, R. A. McAloney, and M. C. Goh, “Diffraction-based assay for detecting multiple analytes,” Anal. Bioanal. Chem. 374, 54-56 (2002).
[CrossRef] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Anal. Chem. (3)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 72, 81R-89R (2000).
[CrossRef] [PubMed]

F. Yu and W. Knoll, “Immunosensor with self-referencing based on surface plasmon diffraction,” Anal. Chem. 76, 1971-1975 (2004).
[CrossRef] [PubMed]

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76, 3530-3535 (2004).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. A (1)

S. A. Shakir and A. F. Turner, “Method of poles for multilayer thin-film waveguides,” Appl. Phys. A 29, 151-155 (1982).
[CrossRef]

Appl. Phys. Lett. (6)

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
[CrossRef]

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104-106 (1978).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800-1802 (1999).
[CrossRef]

M. Galli, D. Gerace, A. Politi, M. Liscidini, M. Patrini, L. C. Andreani, A. Canino, M. Miritello, R. Lo Savio, A. Irrera, and F. Priolo, “Direct evidence of light confinement and emission enhancement in active silicon-on-insulator slot waveguides,” Appl. Phys. Lett. 89, 241114 (2006).
[CrossRef]

E. Guillermain, V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, “Bragg surface wave device based on porous silicon and its application for sensing,” Appl. Phys. Lett. 90, 241116 (2007).
[CrossRef]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined 1D porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

A. P. DeSilva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, “Signaling recognition events with fluorescent sensors and switches,” Chem. Rev. (Washington, D.C.) 97, 1515-1566 (1997).
[CrossRef]

J. Lumin. (1)

E. Guillermain, V. Lysenko, and T. Benyattou, “Surface wave photonic device based on porous silicon multilayers,” J. Lumin. 121, 319-321 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

C. Ricciardi, V. Ballarini, M. Galli, M. Liscidini, L. C. Andreani, M. Losurdo, G. Bruno, S. Lettieri, F. Gesuele, P. Maddalena, and F. Giorgis, “Amorphous silicon nitride: a suitable alloy for optical multilayered structures,” J. Non-Cryst. Solids 352, 1294-1297 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

S. Feng, H. Sang, Z. Li, B. Cheng, and D. Zhang, “Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals,” J. Opt. A, Pure Appl. Opt. 7, 374-381 (2005).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Langmuir (1)

A. Bernard, E. Delamarche, H. Schmid, B. Michel, H. R. Bosshard, and H. Biebuyck, “Printing patterns of proteins,” Langmuir 14, 2225-2229 (1998).
[CrossRef]

Opt. Commun. (1)

F. Villa, J. A. Gaspar-Armenta, and F. Raos-Mendieta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 216, 361-367 (2003).
[CrossRef]

Opt. Eng. (Bellingham) (1)

D. Angeley, J. Davis, and G. Reitz, “Fabrication of an optical-quality linear grating of immunoglobulin G proteins by microcontact printing and demonstration of potential biosensing applications,” Opt. Eng. (Bellingham) 45, 043402 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610-2618 (1999).
[CrossRef]

A. P. Vinogradov, A. V. Dorofeenko, S. G. Erokhin, M. Inoue, A. A. Lisyansky, A. M. Merzlikin, and A. B. Granovsky, “Surface state peculiarities in one-dimensional photonic crystal interfaces,” Phys. Rev. B 74, 045128 (2006).
[CrossRef]

Phys. Rev. E (1)

M. Liscidini and L. C. Andreani, “Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors,” Phys. Rev. E 73, 016613 (2006).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B (3)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

M. Shin and W. M. Robertson, “Surface-plasmon like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360-364 (2005).
[CrossRef]

H. B. Lu, J. Homola, C. T. Campbell, G. G. Nenninger, S. S. Yee, and B. D. Ratner, “Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing,” Sens. Actuators B 74, 91-99 (2001).
[CrossRef]

Solid State Commun. (1)

J. E. Sipe, “A new treatment of the growing wave problem in surface optics,” Solid State Commun. 39, 493-496 (1981).
[CrossRef]

Other (3)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003).

P. N. Prasad, Introduction to Biophotonics (Wiley, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Semi-infinite multilayer. (b) Corresponding finite structure.

Fig. 2
Fig. 2

(a) Photonic bands (darker regions) and BSW dispersion relation (solid green) for a semi-infinite periodic Si Si O 2 multilayer with L a = 260 n a = 3.48 (Si), L b = 320 n b = 1.44 ( Si O 2 ) , σ = 0.384 , and n e = 1.33 ( H 2 O ) , for TE-polarized light. Light curves for water (dotted blue) and Silicon (dashed gray) are shown. (b) Field distribution in the multilayer for the TE BSW at ω = 0.8 ( eV ) and k x = 8.8 μ m 1 . (c) Photonic bands (darker regions) and BSW dispersion relation (solid green) for the same semi-infinite periodic Si Si O 2 multilayer but with σ = 0.6 , for TM-polarized light. Light curves for water (dotted blue) and Silicon (dashed gray) are shown. (d) Field distribution in the multilayer for the TM BSW at ω = 0.8 ( eV ) and k x = 6.5 μ m 1 .

Fig. 3
Fig. 3

(a) Photonic bands (darker regions) and BSW dispersion relation (solid green) for a semi-infinite periodic Si Si O 2 multilayer with L a = 260 n a = 3.48 ,(Si) L b = 320 n b = 1.44 ( Si O 2 ) , σ = 0.384 , and n e = 1.33 ( H 2 O ) , for TE-polarized light. Points are the poles of the reflectance coefficient for the corresponding finite structure composed of 5 + 1 2 periods on an Si O 2 substrate. (b) Photonic bands (darker regions) and BSW dispersion relation (solid green) for a semi-infinite periodic for the same structure of (a). Points are the poles of the reflectance coefficient for the corresponding finite structure composed of 5 + 1 2 periods on a ZnSe substrate. Light curves for external medium (dotted blue) and substrate (dashed red) are shown.

Fig. 4
Fig. 4

Sketch of (a) simple and (b) BSW-assisted diffraction-based biosensors in the Kretschmann configuration.

Fig. 5
Fig. 5

TE BSW dispersion relation (solid green) for an a - Si 1 x N x : H multilayer. The unit cell is composed of 140 nm of a - Si 0.45 N 0.55 : H and 150 nm of a - Si 3 N 4 : H . The first layer is 42 nm of a - Si 0.45 N 0.55 : H . The external medium is water ( n = 1.33 ) . The vector G represents the momentum provided by a 1D grating of period Λ = 5 μ m . Light curves for water (dotted blue) and Corning 7059 ( n = 1.55 ) (red dashed) are shown.

Fig. 6
Fig. 6

Calculated diffraction efficiency ( I m I Inc ) for a 4 nm thick grating on a - Si 1 x N x : H multilayer with N = 10 (solid curves) and a Corning 7059 prism ( n = 1.55 ) (dashed curves) as a function of the incident light wave vector component k x . The unit cell is composed of 140 nm of a - Si 0.45 N 0.55 : H and 150 nm of a - Si 3 N 4 : H on a Corning 7059 substrate ( n = 1.55 ) . The first layer is 42 nm of Si 0.45 N 0.55 . We assume TE-polarized incident light.

Fig. 7
Fig. 7

Calculated diffraction efficiency as a function of the grating thickness and the angle of incidence for an a - Si 1 x N x : H multilayer on a Corning 7059 substrate ( n = 1.55 ) . The unit cell is composed of 140 nm of a - Si 0.45 N 0.55 : H and 150 nm of a - Si 3 N 4 : H . The first layer is 42 nm of Si 0.45 N 0.55 . The number of periods is 10. We assume TE-polarized incident light.

Fig. 8
Fig. 8

Calculated diffraction efficiency as a function of the angle of incidence for an a - Si 1 x N x : H multilayer on a Corning 7059 substrate ( n = 1.5 ) . The unit cell is composed of 140 nm of a - Si 0.45 N 0.55 : H and 150 nm of a - Si 3 N 4 : H . The number of periods is 10. We consider four different thickness of the first layer: (a) 0, (b) 40, (c) 80, and (d) 120 nm of a - Si 0.45 N 0.55 : H . Peaks associated with BSWs are highlighted.

Fig. 9
Fig. 9

(a) One-channel ring resonator configuration. (b) BSW excitation in Kretschmann configuration. Note that the figure is not to scale.

Fig. 10
Fig. 10

Calculated total diffraction efficiency versus the number of periods. Analytic trend (solid red) and numerical calculation (boxes). The portion of light that is scattered in the first diffraction order (with m = 1 ) is indicated with light gray boxes. The system is composed of a grating ( n = 1.45 ) of height d = 4 nm in water ( n = 1.33 ) on an a - Si 1 x N x : H multilayer on a Corning 7059 ( n = 1.55 ) substrate. The unit cell is composed of 140 nm of a - Si 0.45 N 0.55 : H and 150 nm of a - Si 3 N 4 : H on a Corning 7059 substrate ( n = 1.55 ) . The first layer is 42 nm of Si 0.45 N 0.55 . We assume TE-polarized incident light. In the analytical calculation K L = 0.51 and β = γ d 2 = 10 4 .

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

M = ( M 11 M 12 M 12 * M 11 * ) = Φ a I a b Φ b I b a ,
Φ i = ( e i w i L i 0 0 e i w i L i ) ,
w i ( 2 π λ 0 n i ) 2 k x 2 ,
I i j = 1 t i j ( 1 r i j r i j 1 ) ,
( M 11 M 12 M 12 * M 11 * ) ( a 0 b 0 ) = e i K L ( a 0 b 0 ) ,
a 0 = M 12 and b 0 = e i K L M 11 .
M σ = Φ σ 1 Φ a I a b Φ b I b a Φ σ = Φ σ 1 M Φ σ ,
M σ ( a σ b σ ) = e i K L ( a σ b σ ) ,
( a σ b σ ) = Φ σ 1 ( a 0 b 0 ) .
( 0 E e ) = 1 t e a ( 1 r e a r e a 1 ) ( a σ b σ ) ,
a σ + r e a b σ = 0 ,
b 0 a 0 r a e e i w a σ L a = 1 ,
r a e TE = w a w e w a + w e = w a i q e w a + i q e ,
r a e TM = ϵ e w a ϵ a w e ϵ e w a + ϵ a w e = ϵ e w a i ϵ a q e ϵ e w a + i ϵ a q e ,
q e i w e = k x 2 ( 2 π λ 0 n e ) 2 ,
q e ( TE ) = i w a a σ ( TE ) b σ ( TE ) a σ ( TE ) + b σ ( TE ) = i w a a 0 ( TE ) b 0 ( TE ) e 2 i w a σ L a a 0 ( TE ) + b 0 ( TE ) e 2 i w a σ L a = i w a M 12 ( TE ) e 2 i w a σ L a + M 11 ( TE ) e i K ( TE ) L M 12 ( TE ) e 2 i w a σ L a M 11 ( TE ) + e i K ( TE ) L ,
q e ( TM ) = i w a ϵ e ϵ a a σ ( TM ) b σ ( TM ) a σ ( TM ) + b σ ( TM ) = i w a ϵ e ϵ a M 12 ( TM ) e 2 i w a σ L a + M 11 ( TM ) e i K ( TM ) L M 12 ( TM ) e 2 i w a σ L a M 11 ( TM ) + e i K ( TM ) L ,
q e TM ( TE ) = k x 2 ( 2 π λ 0 n e ) 2 ,
I m I Inc η ( k x ) η ( k d = k x + m G ) ( π ( Δ n ) d 2 λ ) 2 m Z ,
δ I m δ ξ I inc η ( k x ) η ( k d ) ( π ( Δ n ) d 2 λ ) .
( A inc A ref ) = ( 1 t * r * t * r t 1 t ) ( B in B out ) ,
B out = B in e i ϕ ( ω ) ,
R tot = r ̃ 2 = A ref A inc 2 = 1 + r e i ϕ e i ϕ + r * 2 ,
B out = B in e β ( d ) e i ϕ ( ω ) ,
r = R e i ψ r = ρ e i ψ r ,
R tot = 1 + ρ e β e i ( ψ r ϕ ) ρ e i ψ r + e β e i ϕ 2 = 1 + ρ e β e i ( ψ r ϕ ) ρ + e β e i ( ψ r ϕ ) 2 = 1 + ρ e β e i Δ ρ + e β e i Δ 2 = 1 + ρ 2 e 2 β + 2 ρ e β cos ( Δ ) ρ 2 + e 2 β + 2 ρ e β cos ( Δ ) ,
R BSW ( ρ , β ) = 1 + ρ 2 e 2 β 2 ρ e β ρ 2 + e 2 β 2 ρ e β = ( 1 ρ e β ρ e β ) 2 .
D BSW = 1 R BSW = 1 ( 1 ρ e β ρ e β ) 2 .
D BSW = 1 ( 1 ( 1 e K L N ) ( 1 + γ d 2 ) ( 1 e K L N ) ( 1 + γ d 2 ) ) 2 ,

Metrics