Abstract

Experimental studies of ultrafast beam shaping have come about from the need to compensate diffraction-induced dispersive effects in femtosecond laser beams. From a theoretical point of view, chromatic matching of diffracted spherical waves in the vicinity of the geometrical focus is attained by applying conveniently dispersive boundary conditions in the far-field zone, a subject thoroughly analyzed in the paraxial regime. For applications demanding high spatial resolution, however, high-numerical-aperture microscope objectives may be employed instead and would lead to nonparaxiality of the focal wavefields. These circumstances have motivated our investigation. Concretely we report on prerequisites for spectral invariance extended to wide-angle geometries, which provides stabilization of the spatiotemporal response in the Fourier plane. In this context, general boundary conditions are given in the frame of the Debye representation of wavefields. Features of this sort of dynamic apodization (spatial filtering) leading to perfect achromatization are described in detail.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription