Abstract

We design a metal-dielectric structure to realize directional beaming of dual-wavelength light based on the guided-mode resonance theory. A single nanoslit preformatted in an optically thick metal film flanked by a dielectric grating on the exit surface of the slit can realize directional beaming of two wavelength lights (442 and 633nm), simultaneously. Numerical simulations by using the finite-difference time-domain method demonstrate the theoretical prediction. Further investigations reveal that the structures can achieve dual-wavelength light beaming in a wide frequency window, implying the potential of the structures in near-field optics and spectroscopy, data storage, biosensors, and nanoscale directional light sources and emitters.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  3. L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
    [CrossRef]
  4. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
    [CrossRef]
  5. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500-4502 (2003).
    [CrossRef]
  6. B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599-3601 (2004).
    [CrossRef]
  7. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
    [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076-1078 (2001).
    [CrossRef]
  9. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  10. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  11. D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503-3511 (2006).
    [CrossRef] [PubMed]
  12. Z.-B. Li, J.-G. Tian, W.-Y. Zhou, W.-P. Zang, and C.-P. Zhang, “Periodic dielectric bars assisted enhanced transmission and directional light emission from a single subwavelength slit,” Opt. Express 14, 8037-8042 (2006).
    [CrossRef] [PubMed]
  13. B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
    [CrossRef]
  14. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  15. J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nanotechnol. 7, 229-236 (2008).
    [CrossRef]
  16. S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470-1474 (1990).
    [CrossRef]
  17. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  19. H. Raether, Surface Plasmons (Springer-Verlag, 1988), Chap. 2, p. 7.

2008 (1)

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nanotechnol. 7, 229-236 (2008).
[CrossRef]

2006 (3)

2005 (1)

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

2004 (3)

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[CrossRef] [PubMed]

2003 (3)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

2001 (1)

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076-1078 (2001).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

1995 (1)

1990 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Bagby, J. S.

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076-1078 (2001).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076-1078 (2001).
[CrossRef]

Chang, C.-K.

Chang, Y.-C.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Chen, Y.-C.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503-3511 (2006).
[CrossRef] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Degiron, A.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Grann, E. B.

Huang, K.-T.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kim, H. K.

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nanotechnol. 7, 229-236 (2008).
[CrossRef]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

Kuan, C.-H.

Lee, C.-K.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503-3511 (2006).
[CrossRef] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Leosson, K.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076-1078 (2001).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Li, Z.-B.

Liaw, J.-W.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Lin, D.-Z.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503-3511 (2006).
[CrossRef] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Lin, M.-W.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liu, J.-M.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503-3511 (2006).
[CrossRef] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Magnusson, R.

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Moharam, M. G.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pommet, D. A.

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, 1988), Chap. 2, p. 7.

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Tian, J.-G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076-1078 (2001).
[CrossRef]

Wang, B.

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

Wang, G. P.

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[CrossRef] [PubMed]

Wang, S. S.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Wuenschell, J.

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nanotechnol. 7, 229-236 (2008).
[CrossRef]

Yang, D.-L.

Yeh, C.-S.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503-3511 (2006).
[CrossRef] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Yeh, J.-T.

D.-Z. Lin, C.-K. Chang, Y.-C. Chen, D.-L. Yang, M.-W. Lin, J.-T. Yeh, J.-M. Liu, C.-H. Kuan, C.-S. Yeh, and C.-K. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503-3511 (2006).
[CrossRef] [PubMed]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Yu, L.-B.

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Zang, W.-P.

Zhang, C.-P.

Zhou, W.-Y.

Appl. Phys. Lett. (5)

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642-644 (2004).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

B. Wang and G. P. Wang, “Metal heterowaveguides for nanometric focusing of light,” Appl. Phys. Lett. 85, 3599-3601 (2004).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, K. Leosson, and A. Boltasseva, “Bend loss in surface plasmon polariton band-gap structures,” Appl. Phys. Lett. 79, 1076-1078 (2001).
[CrossRef]

B. Wang and G. P. Wang, “Directional beaming of light from a nanoslit surrounded by metallic heterostructures,” Appl. Phys. Lett. 88, 013114 (2006).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nanotechnol. 7, 229-236 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, “Physical origin of directional beaming emitted from a subwavelength slit,” Phys. Rev. B 71, 041405 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface Plasmons (Springer-Verlag, 1988), Chap. 2, p. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Proposed structure for directional beaming of dual-wavelength light. w, nanoslit width; h m , Ag film thickness; h d , dielectric grating thickness; grating period Λ = a + b , where a, b, and c are the widths of the dielectric film and air gap in the bottom and upper surfaces of the dielectric grating, respectively. θ and θ are the diffraction angles of light in the dielectric grating and air; ε m , ε d , and ε 0 are the dielectric constants of Ag, the dielectric grating, and air, respectively; and N denotes the number of grating periods. (b) Dependence of the real part of the propagation constant β r on h d for the metallic-dielectric-air waveguides. The inset depicts the waveguide structure.

Fig. 2
Fig. 2

Gray distributions of H y of light beams at λ 1 = 442 nm for h d = ( a ) 182, (b) 194, and (c) 206 nm and at λ 2 = 633 nm for h d = ( e ) 150, (f) 194, and (g) 270 nm , respectively. (d), (h) Dependence of normalized amplitude profiles of H y of light beams along the x axis on different h d at λ 1 and λ 2 , respectively. In the calculations, a = 272 and b = 10 nm are used.

Fig. 3
Fig. 3

FDTD simulated dependence of HAHMs (curves 1 and 2) and normalized amplitudes of H y (curves 3 and 4) of the emitted central beams on h d for λ 1 = 442 (curves 1 and 3) and λ 2 = 633 nm (curves 2 and 4), respectively. The data are obtained from Figs. 2d, 2h. Inset, dependence of the HAHMs of beaming lights λ 1 and λ 2 on h d obtained from FDTD numerical simulations (star curves) and analytical results from Eq. (1) (solid curves), respectively.

Fig. 4
Fig. 4

Calculated frequency window as curve TM 1 ( λ 1 ) can intersect TM 0 ( λ 2 ) in the ranges of λ 1 from 430 to 650 nm and λ 2 from 500 to 900 nm . Districts I and II, TM 1 ( λ 1 ) can intersect with TM 0 ( λ 2 ) as the grating thickness is with a thinner and thicker h d , respectively. District III, TM 1 ( λ 1 ) cannot intersect with TM 0 ( λ 2 ) .

Fig. 5
Fig. 5

FDTD simulated dependence of HAHMs of emitted central beams on parameter errors δ for (a) λ 1 = 442 and (b) λ 2 = 633 nm . Errors 1, 2, and 3 denote the δ in structure parameters a, b, and c as shown in Fig. 1a, respectively.

Tables (1)

Tables Icon

Table 1 Structure Parameters ( h d , a and b, nm), HAHM (degree) and DE (%) of the Emitted Central Beams for Wavelength Pairs ( λ 1 , λ 2 , nm)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β r = k 0 sin θ + j 2 π Λ ,
d E j 2 ( z ) d z 2 + [ k 0 2 ε av ( k av sin θ j 2 π Λ ) 2 ] E j ( z ) + k 0 2 ( ε d ε a ) n = 1 sin ( n π f ) n π [ E j n ( z ) + E j + n ( z ) ] = 0 ,
d E j 2 ( z ) d z 2 + [ k 0 2 ε av β 2 ] E j ( z ) = 0 ,
k d h d arctan ( ε d k a ε 0 k d ) arctan ( ε d k m ε m k d ) = m π ,
m = 0 , 1 , 2 , ,
β r λ 1 = j λ 1 2 π Λ , β r λ 2 = j λ 2 2 π Λ , j λ 1 , j λ 2 = 1 , 2 , 3 , ,

Metrics