Abstract

A flashlamp pumped 2.70μm Cr:Er:yttrium scandium gallium garnet (YSGG) laser in a simple Fabry–Perot-type resonator has been developed. The emission wavelength of 2.70μm at the laser is easily selected by a specially designed resonator with a dichroic coated mirror. Maximum output energy of 88mJ with a slope efficiency of 0.167% has been achieved in the free-running regime. In the Q-switching regime using an IR-quartz shutter, a Q-switched pulse of 80ns, single-pulse energy of 30mJ, and a slope efficiency of 0.064% have been achieved in TEM00 mode. Good agreement between a proposed theoretical model and the experimental results is obtained. The optimal output on the 2.70μm emission Cr:Er:YSGG lasers is estimated by a theoretical simulation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
    [CrossRef]
  2. D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
    [CrossRef]
  3. D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186-193 (2002).
    [CrossRef] [PubMed]
  4. F. Konz, M. Frenz, H. Patisto, and H. P. Weber, “Thermal and mechanical damage of corneal tissue after free running and Q-switched mid-infrared laser ablation,” Proc. SPIE 2077, 78-86 (1993).
    [CrossRef]
  5. J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9, 314-326 (1989).
    [CrossRef] [PubMed]
  6. C. Q. Le, M. Staninec, and D. Fried, “The influence of pulse duration on the bond strength of dentin to composite after Er:YAG laser irradiation,” Proc. SPIE 5687, 151-156 (2005).
    [CrossRef]
  7. E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
    [CrossRef]
  8. N. M. Fried, Y. Yang, K. Lee, and H. A. Tafti, “Transmission of free-running and Q-switched Er:YAG and Er:YSGG laser energy through germanium Oxide/silica fibers,” Proc. SPIE 5691, 115-119 (2005).
    [CrossRef]
  9. A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr: YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun. 125, 90-94 (1996).
    [CrossRef]
  10. S. Georgescu and V. Lupei, “Q-switch regime of 3-μm Er:YAG Lasers,” IEEE J. Quantum Electron. 34, 1031-1040 (1998).
    [CrossRef]
  11. S. Georgescu, O. Toma, and H. Totia, “Intrinsic limits of the efficiency of erbium 3-μm lasers,” IEEE J. Quantum Electron. 39, 722-732 (2003).
    [CrossRef]
  12. V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μmEr3+ lasers,” IEEE J. Quantum Electron. 29, 426-434 (1993).
    [CrossRef]
  13. M. A. Noginov, S. G. Semenkov, V. A. Smirnov, and I. A. Shcherbakov, “Effect of interaction of excited erbium ions on the formation of population inversion in the I11/24-->I13/24 transition for stationary excitation in a YSGG:Cr+3:Er+3 crystal,” Opt. Spectrosc. 69, 74-78 (1990).

2005 (2)

C. Q. Le, M. Staninec, and D. Fried, “The influence of pulse duration on the bond strength of dentin to composite after Er:YAG laser irradiation,” Proc. SPIE 5687, 151-156 (2005).
[CrossRef]

N. M. Fried, Y. Yang, K. Lee, and H. A. Tafti, “Transmission of free-running and Q-switched Er:YAG and Er:YSGG laser energy through germanium Oxide/silica fibers,” Proc. SPIE 5691, 115-119 (2005).
[CrossRef]

2003 (1)

S. Georgescu, O. Toma, and H. Totia, “Intrinsic limits of the efficiency of erbium 3-μm lasers,” IEEE J. Quantum Electron. 39, 722-732 (2003).
[CrossRef]

2002 (1)

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

1998 (2)

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
[CrossRef]

S. Georgescu and V. Lupei, “Q-switch regime of 3-μm Er:YAG Lasers,” IEEE J. Quantum Electron. 34, 1031-1040 (1998).
[CrossRef]

1996 (2)

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
[CrossRef]

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr: YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun. 125, 90-94 (1996).
[CrossRef]

1993 (2)

F. Konz, M. Frenz, H. Patisto, and H. P. Weber, “Thermal and mechanical damage of corneal tissue after free running and Q-switched mid-infrared laser ablation,” Proc. SPIE 2077, 78-86 (1993).
[CrossRef]

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μmEr3+ lasers,” IEEE J. Quantum Electron. 29, 426-434 (1993).
[CrossRef]

1990 (1)

M. A. Noginov, S. G. Semenkov, V. A. Smirnov, and I. A. Shcherbakov, “Effect of interaction of excited erbium ions on the formation of population inversion in the I11/24-->I13/24 transition for stationary excitation in a YSGG:Cr+3:Er+3 crystal,” Opt. Spectrosc. 69, 74-78 (1990).

1989 (1)

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9, 314-326 (1989).
[CrossRef] [PubMed]

1986 (1)

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Ashouri, N.

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

Breunig, T.

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

Deutsch, T. F.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9, 314-326 (1989).
[CrossRef] [PubMed]

Duhn, C.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
[CrossRef]

Ertmer, W.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr: YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun. 125, 90-94 (1996).
[CrossRef]

Featherstone, J. D. B.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
[CrossRef]

Florea, V.

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μmEr3+ lasers,” IEEE J. Quantum Electron. 29, 426-434 (1993).
[CrossRef]

Flotte, T. J.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9, 314-326 (1989).
[CrossRef] [PubMed]

Frenz, M.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
[CrossRef]

F. Konz, M. Frenz, H. Patisto, and H. P. Weber, “Thermal and mechanical damage of corneal tissue after free running and Q-switched mid-infrared laser ablation,” Proc. SPIE 2077, 78-86 (1993).
[CrossRef]

Fried, D.

C. Q. Le, M. Staninec, and D. Fried, “The influence of pulse duration on the bond strength of dentin to composite after Er:YAG laser irradiation,” Proc. SPIE 5687, 151-156 (2005).
[CrossRef]

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
[CrossRef]

Fried, N. M.

N. M. Fried, Y. Yang, K. Lee, and H. A. Tafti, “Transmission of free-running and Q-switched Er:YAG and Er:YSGG laser energy through germanium Oxide/silica fibers,” Proc. SPIE 5691, 115-119 (2005).
[CrossRef]

Georgescu, S.

S. Georgescu, O. Toma, and H. Totia, “Intrinsic limits of the efficiency of erbium 3-μm lasers,” IEEE J. Quantum Electron. 39, 722-732 (2003).
[CrossRef]

S. Georgescu and V. Lupei, “Q-switch regime of 3-μm Er:YAG Lasers,” IEEE J. Quantum Electron. 34, 1031-1040 (1998).
[CrossRef]

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μmEr3+ lasers,” IEEE J. Quantum Electron. 29, 426-434 (1993).
[CrossRef]

Högele, A.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr: YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun. 125, 90-94 (1996).
[CrossRef]

Hörbe, G.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr: YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun. 125, 90-94 (1996).
[CrossRef]

II'ichev, N. N.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Jansen, E. D.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
[CrossRef]

Kalitin, S. P.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Konz, F.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
[CrossRef]

F. Konz, M. Frenz, H. Patisto, and H. P. Weber, “Thermal and mechanical damage of corneal tissue after free running and Q-switched mid-infrared laser ablation,” Proc. SPIE 2077, 78-86 (1993).
[CrossRef]

Laptev, V. V.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Le, C. Q.

C. Q. Le, M. Staninec, and D. Fried, “The influence of pulse duration on the bond strength of dentin to composite after Er:YAG laser irradiation,” Proc. SPIE 5687, 151-156 (2005).
[CrossRef]

Lee, K.

N. M. Fried, Y. Yang, K. Lee, and H. A. Tafti, “Transmission of free-running and Q-switched Er:YAG and Er:YSGG laser energy through germanium Oxide/silica fibers,” Proc. SPIE 5691, 115-119 (2005).
[CrossRef]

Lubatschowski, H.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr: YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun. 125, 90-94 (1996).
[CrossRef]

Lupei, V.

S. Georgescu and V. Lupei, “Q-switch regime of 3-μm Er:YAG Lasers,” IEEE J. Quantum Electron. 34, 1031-1040 (1998).
[CrossRef]

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μmEr3+ lasers,” IEEE J. Quantum Electron. 29, 426-434 (1993).
[CrossRef]

Malyutin, A. A.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

McCormack, S. M.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
[CrossRef]

Noginov, M. A.

M. A. Noginov, S. G. Semenkov, V. A. Smirnov, and I. A. Shcherbakov, “Effect of interaction of excited erbium ions on the formation of population inversion in the I11/24-->I13/24 transition for stationary excitation in a YSGG:Cr+3:Er+3 crystal,” Opt. Spectrosc. 69, 74-78 (1990).

Osikko, V. V.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Pashinin, P. P.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Patisto, H.

F. Konz, M. Frenz, H. Patisto, and H. P. Weber, “Thermal and mechanical damage of corneal tissue after free running and Q-switched mid-infrared laser ablation,” Proc. SPIE 2077, 78-86 (1993).
[CrossRef]

Pratisto, H.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
[CrossRef]

Prokhorov, A. M.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Saidov, Z. S.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Seka, W.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
[CrossRef]

Semenkov, S. G.

M. A. Noginov, S. G. Semenkov, V. A. Smirnov, and I. A. Shcherbakov, “Effect of interaction of excited erbium ions on the formation of population inversion in the I11/24-->I13/24 transition for stationary excitation in a YSGG:Cr+3:Er+3 crystal,” Opt. Spectrosc. 69, 74-78 (1990).

Shcherbakov, I. A.

M. A. Noginov, S. G. Semenkov, V. A. Smirnov, and I. A. Shcherbakov, “Effect of interaction of excited erbium ions on the formation of population inversion in the I11/24-->I13/24 transition for stationary excitation in a YSGG:Cr+3:Er+3 crystal,” Opt. Spectrosc. 69, 74-78 (1990).

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Shori, R.

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

Smirnov, V. A.

M. A. Noginov, S. G. Semenkov, V. A. Smirnov, and I. A. Shcherbakov, “Effect of interaction of excited erbium ions on the formation of population inversion in the I11/24-->I13/24 transition for stationary excitation in a YSGG:Cr+3:Er+3 crystal,” Opt. Spectrosc. 69, 74-78 (1990).

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Staninec, M.

C. Q. Le, M. Staninec, and D. Fried, “The influence of pulse duration on the bond strength of dentin to composite after Er:YAG laser irradiation,” Proc. SPIE 5687, 151-156 (2005).
[CrossRef]

Tafti, H. A.

N. M. Fried, Y. Yang, K. Lee, and H. A. Tafti, “Transmission of free-running and Q-switched Er:YAG and Er:YSGG laser energy through germanium Oxide/silica fibers,” Proc. SPIE 5691, 115-119 (2005).
[CrossRef]

Toma, O.

S. Georgescu, O. Toma, and H. Totia, “Intrinsic limits of the efficiency of erbium 3-μm lasers,” IEEE J. Quantum Electron. 39, 722-732 (2003).
[CrossRef]

Totia, H.

S. Georgescu, O. Toma, and H. Totia, “Intrinsic limits of the efficiency of erbium 3-μm lasers,” IEEE J. Quantum Electron. 39, 722-732 (2003).
[CrossRef]

Umyskov, A. F.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Walsh, J. T.

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9, 314-326 (1989).
[CrossRef] [PubMed]

Weber, H. P.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
[CrossRef]

F. Konz, M. Frenz, H. Patisto, and H. P. Weber, “Thermal and mechanical damage of corneal tissue after free running and Q-switched mid-infrared laser ablation,” Proc. SPIE 2077, 78-86 (1993).
[CrossRef]

Welch, A. J.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
[CrossRef]

Welling, H.

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr: YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun. 125, 90-94 (1996).
[CrossRef]

Yang, Y.

N. M. Fried, Y. Yang, K. Lee, and H. A. Tafti, “Transmission of free-running and Q-switched Er:YAG and Er:YSGG laser energy through germanium Oxide/silica fibers,” Proc. SPIE 5691, 115-119 (2005).
[CrossRef]

Zharikov, E. V.

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Zuerlein, M.

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
[CrossRef]

Appl. Surf. Sci. (1)

D. Fried, M. Zuerlein, J. D. B. Featherstone, W. Seka, C. Duhn, and S. M. McCormack, “IR laser ablation of dental enamel: mechanistic dependence on the primary absorber,” Appl. Surf. Sci. 127-129, 852-856 (1998).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. Georgescu and V. Lupei, “Q-switch regime of 3-μm Er:YAG Lasers,” IEEE J. Quantum Electron. 34, 1031-1040 (1998).
[CrossRef]

S. Georgescu, O. Toma, and H. Totia, “Intrinsic limits of the efficiency of erbium 3-μm lasers,” IEEE J. Quantum Electron. 39, 722-732 (2003).
[CrossRef]

V. Lupei, S. Georgescu, and V. Florea, “On the dynamics of population inversion for 3 μmEr3+ lasers,” IEEE J. Quantum Electron. 29, 426-434 (1993).
[CrossRef]

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12-μm and 2.79-μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32, 2025-2036 (1996).
[CrossRef]

Lasers Surg. Med. (2)

D. Fried, N. Ashouri, T. Breunig, and R. Shori, “Mechanism of water augmentation during IR laser ablation of dental enamel,” Lasers Surg. Med. 31, 186-193 (2002).
[CrossRef] [PubMed]

J. T. Walsh, T. J. Flotte, and T. F. Deutsch, “Er:YAG laser ablation of tissue: effect of pulse duration and tissue type on thermal damage,” Lasers Surg. Med. 9, 314-326 (1989).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Högele, G. Hörbe, H. Lubatschowski, H. Welling, and W. Ertmer, “2.70 μm CrEr: YSGG laser with high output energy and FTIR-Q-switch,” Opt. Commun. 125, 90-94 (1996).
[CrossRef]

Opt. Spectrosc. (1)

M. A. Noginov, S. G. Semenkov, V. A. Smirnov, and I. A. Shcherbakov, “Effect of interaction of excited erbium ions on the formation of population inversion in the I11/24-->I13/24 transition for stationary excitation in a YSGG:Cr+3:Er+3 crystal,” Opt. Spectrosc. 69, 74-78 (1990).

Proc. SPIE (3)

C. Q. Le, M. Staninec, and D. Fried, “The influence of pulse duration on the bond strength of dentin to composite after Er:YAG laser irradiation,” Proc. SPIE 5687, 151-156 (2005).
[CrossRef]

F. Konz, M. Frenz, H. Patisto, and H. P. Weber, “Thermal and mechanical damage of corneal tissue after free running and Q-switched mid-infrared laser ablation,” Proc. SPIE 2077, 78-86 (1993).
[CrossRef]

N. M. Fried, Y. Yang, K. Lee, and H. A. Tafti, “Transmission of free-running and Q-switched Er:YAG and Er:YSGG laser energy through germanium Oxide/silica fibers,” Proc. SPIE 5691, 115-119 (2005).
[CrossRef]

Sov. J. Quantum Electron. (1)

E. V. Zharikov, N. N. II'ichev, S. P. Kalitin, V. V. Laptev, A. A. Malyutin, V. V. Osikko, P. P. Pashinin, A. M. Prokhorov, Z. S. Saidov, V. A. Smirnov, A. F. Umyskov, and I. A. Shcherbakov, “Spectral, luminescence, and lasing properties of a yttrium scandium gallium garnet crystal activated with chromium and erbium,” Sov. J. Quantum Electron. 16, 635-639 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the Er:Cr:YSGG laser with FTIR Q-switch: M, rear mirror (radius curvature of 3 m and high reflectance for 2.70 μ m and high transmittance for 2.79 μ m , Ca F 2 ); OC, output coupler (reflectances of 55%, 68%, and 77% for 2.70 μ m , Ca F 2 ).

Fig. 2
Fig. 2

Energy-level scheme of Er 3 + in YSGG and Cr 3 + Er 3 + energy transfer processes: (a) W 11 , upconversion from I 13 2 4 ; (b) W 22 , upconversion from I 11 2 4 ; (c) W 50 , cross relaxation from ( S 3 2 4 I 9 2 4 ) Er 3 + + ( I 15 2 4 I 13 2 4 ) Er 3 + ; (d) W cr , cross relaxation from ( I 13 2 4 I 15 2 4 ) Er 3 + + ( T 2 4 T 1 4 ) Cr 3 + ; the white arrows indicate the pump rate at the ground state.

Fig. 3
Fig. 3

Influence of the total passive losses (open symbols; ρ 0 = 0 , 2 × 10 3 cm 1 , 5 × 10 3 cm 1 , 7.6 × 10 3 cm 1 , and 1 × 10 2 cm 1 ) and the free-running result (solid symbol) in the resonator with reflectance of OC 3 ( R 23 = 77 % ) at E in = 91 J .

Fig. 4
Fig. 4

Free-running 2.70 μ m laser input–output characteristics: for solid symbols with OC 1 ( R 21 = 55 % ) , OC 2 ( R 22 = 68 % ) , and OC 3 ( R 23 = 77 % ) (see Table 1). Slope efficiency is η 1 = 0.136 % , η 2 = 0.167 % , and η 3 = 0.159 % . Simulation results: for open symbols with R 21 = 55 % , R 22 = 68 % , and R 23 = 77 % .

Fig. 5
Fig. 5

(a) Trigger signal from the flashlamp; (b) the control pulse for PZT; (c) the transmission temporal profile of the He–Ne laser ( 632 nm ) ; (d) the temporal pulse duration of the 2.70 μ m laser is 80 ns .

Fig. 6
Fig. 6

Temporal transmission profile of the He–Ne laser: (a) transmission profile versus width of the applied control pulse; (b) the detailed temporal shape for a single transmission pulse of the FTIR shutter (switching time of 420 ns and the opened status time of the IR-quartz shutter).

Fig. 7
Fig. 7

Influence of the total passive losses (open symbols; ρ 0 = 0 , 2 × 10 3 cm 1 , 5 × 10 3 cm 1 , 7.6 × 10 3 cm 1 , and 1 × 10 2 cm 1 ) and the FTIR Q-switch result (solid symbol) in the resonator with the reflectance of OC 1 ( R 21 = 55 % ) at E in = 103 J (see Table 1).

Fig. 8
Fig. 8

Output energy versus mirror reflectivity: calculated curve for long and short pulses, respectively (with triangle and square symbols), and measured long pulse energy (star symbol) with reflectances of 55%, 68%, and 77% at E in = 91 J .

Tables (2)

Tables Icon

Table 1 Reflective Product at 2.70 and 2.79 μ m of Rear Mirror and Output Couplers

Tables Icon

Table 2 Spectral Pumping Coefficients of Er:Cr:YSGG for Pumping With a Xenon Flashlamp

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d N 5 d t = N 5 T 5 W 50 N 0 N 5 f + W 22 N 2 2 + k p 5 N 0 ,
d N 4 d t = N 4 T 4 + N 5 T 5 + k p 4 N 0 ,
d N 3 d t = N 3 T 3 + N 4 T 4 + W 11 N 1 2 + W 50 N 0 N 5 f + k p 3 N 0 ,
d N 2 d t = N 2 T 2 + N 3 T 3 2 W 22 N 2 2 σ ( α N 2 β N 1 ) Φ + k p 2 N 0 + ( k + W cr N cr ) k tot N 1 ,
d N 1 d t = N 1 T 1 + N 2 T 2 2 W 11 N 1 2 + f W 50 N 0 N 5 + σ ( α N 2 β N 1 ) Φ + k p 1 N 0 [ ( 1 f ) k + W cr N cr ] k tot N 1 ,
d Φ d t = [ σ ( α N 2 β N 1 ) ρ ] υ Φ ,
f = W 50 N 0 N 5 W 50 N 0 N 5 + W cr N cr N 5 ( 0 < f < 1 )
ρ = ln ( R 1 R 2 H Q 2 ) 2 l p + ρ 0 ,
H Q ( t ) = H Q low + ( H Q low H Q high ) { cos [ 2 π τ Q ( t t 1 ) ] m 1 } ,
E out = ln ( 1 R 2 ) h ν L 2 l p V mode pulse Φ ( t ) d t ,
E abs = k p i N 0 h ν i V pump 0 Δ t k tot ( t ) d t ,
E in = E abs η ele η cavity η f g η q d ,
K trans = η ele η cavity η f g η q d .

Metrics