Abstract

We study the nature of fluorescence scattering by a radiating fluorophore placed near a metal nanoparticle with the finite-difference time-domain method. Angle-resolved light-scattering distributions are contrasted with those that result when ordinary plane waves are scattered by the nanoparticle. For certain sized nanoparticles and fluorophore dipoles oriented parallel to the metal surface, we find that the highest scattered fluorescence emission is directed back toward the fluorophore, which is very different from plane-wave scattering. The largest enhancements of far-field radiation are found when the dipole is oriented normal to the surface. We also examined the effect of the fluorophore on the near field around the particle. The fields can be enhanced or quenched compared to the isolated fluorophore and exhibit strong dependence on fluorophore orientation, as well as interesting spatial variations around the nanoparticle.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. L. Medintz, H. T. Udeya, E. R. Goldman, and H. Mattoussi, "Quantum dot bioconjugates for imaging, labeling and sensing," Nat. Mater. 4, 435-446 (2005).
    [CrossRef] [PubMed]
  2. D. B. Zorov, E. Kobrinsky, M. Juhasova, and S. J. Sollott, "Examining intracellular organelle function using fluorescent probes," Circ. Res. 95, 239-252 (2004).
    [CrossRef] [PubMed]
  3. D. T. McQuade, A. E. Pullen, and T. M. Swager, "Conjugated polymer-based chemical sensors," Chem. Rev. (Washington, D.C.) 100, 2537-2574 (2000).
    [CrossRef]
  4. D. Zhao and T. Swager, "Sensory responses in solution versus solid state: a fluorescence quenching study of poly(iptycenebutadiynylene)s," Macromolecules 38, 9377-9384 (2005).
    [CrossRef]
  5. K. Aslan, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date," Anal. Bioanal. Chem. 382, 926-933 (2005).
    [CrossRef] [PubMed]
  6. K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
    [CrossRef] [PubMed]
  7. J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Dye-labeled silver nanoshell--bright particle," J. Phys. Chem. B 110, 8986-8991 (2006).
    [CrossRef] [PubMed]
  8. Y. Fu and J. R. Lakowicz, "Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy," Anal. Chem. 78, 6238-6245 (2006).
    [CrossRef] [PubMed]
  9. K. Ray, R. Badugu, and J. R. Lakowicz, "Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films, "Langmuir 22, 8374-8378 (2006).
    [CrossRef] [PubMed]
  10. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
    [CrossRef] [PubMed]
  11. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2000).
  12. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
    [CrossRef]
  13. A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech. 23, 623-630 (1975).
    [CrossRef]
  14. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
    [CrossRef]
  15. P. Yang and N. K. Liou, "Light scattering by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models," J. Opt. Soc. Am. A 12, 162-176 (1995).
    [CrossRef]
  16. P. Yang and N. K. Liou, "Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space," J. Opt. Soc. Am. A 13, 2072-2085 (1996).
    [CrossRef]
  17. D. W. Prather and S. Shi, "Formulation and application of finite-difference time domain method for the analysis of axially symmetric diffractive optical elements," J. Opt. Soc. Am. A 16, 1131-1142 (1999).
    [CrossRef]
  18. G. Guiffaunt and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas Propag. Mag. 43, 94-103 (2001).
    [CrossRef]
  19. J. P. Berenger, "A perfectly matched layer for the adsorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  20. Reference Guide for FDTD Solutions Release 5.0 (2007), http://www.lumerical.com/fdtd.
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light Particles (Wiley-Interscience, 1983).
  22. G. Mie, "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Ann. Phys. 25, 377-445 (1908).
    [CrossRef]
  23. H. Chew, M. Kerker, and D. D. Cooke, "Electromagnetic scattering by a dielectric sphere in a diverging radiation field," Phys. Rev. A 16, 320-323 (1977).
    [CrossRef]
  24. R. Ruppin, "Decay of an excited molecule near a small metal sphere," J. Chem. Phys. 76, 1681-1684 (1982).
    [CrossRef]
  25. J. Gersten and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces," J. Chem. Phys. 73, 3023-3037 (1980).
    [CrossRef]
  26. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
    [CrossRef]
  27. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  28. S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68, 045415 (2003).
    [CrossRef]
  29. A. Shadowitz, The Electromagnetic Field (Dover, 1988).

2006 (3)

J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Dye-labeled silver nanoshell--bright particle," J. Phys. Chem. B 110, 8986-8991 (2006).
[CrossRef] [PubMed]

Y. Fu and J. R. Lakowicz, "Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy," Anal. Chem. 78, 6238-6245 (2006).
[CrossRef] [PubMed]

K. Ray, R. Badugu, and J. R. Lakowicz, "Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films, "Langmuir 22, 8374-8378 (2006).
[CrossRef] [PubMed]

2005 (5)

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

I. L. Medintz, H. T. Udeya, E. R. Goldman, and H. Mattoussi, "Quantum dot bioconjugates for imaging, labeling and sensing," Nat. Mater. 4, 435-446 (2005).
[CrossRef] [PubMed]

D. Zhao and T. Swager, "Sensory responses in solution versus solid state: a fluorescence quenching study of poly(iptycenebutadiynylene)s," Macromolecules 38, 9377-9384 (2005).
[CrossRef]

K. Aslan, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date," Anal. Bioanal. Chem. 382, 926-933 (2005).
[CrossRef] [PubMed]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
[CrossRef] [PubMed]

2004 (1)

D. B. Zorov, E. Kobrinsky, M. Juhasova, and S. J. Sollott, "Examining intracellular organelle function using fluorescent probes," Circ. Res. 95, 239-252 (2004).
[CrossRef] [PubMed]

2003 (1)

S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68, 045415 (2003).
[CrossRef]

2001 (1)

G. Guiffaunt and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas Propag. Mag. 43, 94-103 (2001).
[CrossRef]

2000 (1)

D. T. McQuade, A. E. Pullen, and T. M. Swager, "Conjugated polymer-based chemical sensors," Chem. Rev. (Washington, D.C.) 100, 2537-2574 (2000).
[CrossRef]

1999 (1)

1996 (1)

1995 (1)

1994 (1)

J. P. Berenger, "A perfectly matched layer for the adsorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

1984 (1)

G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

1982 (1)

R. Ruppin, "Decay of an excited molecule near a small metal sphere," J. Chem. Phys. 76, 1681-1684 (1982).
[CrossRef]

1980 (1)

J. Gersten and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces," J. Chem. Phys. 73, 3023-3037 (1980).
[CrossRef]

1977 (1)

H. Chew, M. Kerker, and D. D. Cooke, "Electromagnetic scattering by a dielectric sphere in a diverging radiation field," Phys. Rev. A 16, 320-323 (1977).
[CrossRef]

1975 (1)

A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech. 23, 623-630 (1975).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1966 (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
[CrossRef]

1908 (1)

G. Mie, "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Anal. Bioanal. Chem. (1)

K. Aslan, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date," Anal. Bioanal. Chem. 382, 926-933 (2005).
[CrossRef] [PubMed]

Anal. Biochem. (1)

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

Y. Fu and J. R. Lakowicz, "Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy," Anal. Chem. 78, 6238-6245 (2006).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Ann. Phys. 25, 377-445 (1908).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

D. T. McQuade, A. E. Pullen, and T. M. Swager, "Conjugated polymer-based chemical sensors," Chem. Rev. (Washington, D.C.) 100, 2537-2574 (2000).
[CrossRef]

Circ. Res. (1)

D. B. Zorov, E. Kobrinsky, M. Juhasova, and S. J. Sollott, "Examining intracellular organelle function using fluorescent probes," Circ. Res. 95, 239-252 (2004).
[CrossRef] [PubMed]

IEEE Antennas Propag. Mag. (1)

G. Guiffaunt and K. Mahdjoubi, "A parallel FDTD algorithm using the MPI library," IEEE Antennas Propag. Mag. 43, 94-103 (2001).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech. 23, 623-630 (1975).
[CrossRef]

J. Chem. Phys. (2)

R. Ruppin, "Decay of an excited molecule near a small metal sphere," J. Chem. Phys. 76, 1681-1684 (1982).
[CrossRef]

J. Gersten and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces," J. Chem. Phys. 73, 3023-3037 (1980).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, "A perfectly matched layer for the adsorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Fluoresc. (1)

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, "Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons," J. Fluoresc. 15, 643-654 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (1)

J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Dye-labeled silver nanoshell--bright particle," J. Phys. Chem. B 110, 8986-8991 (2006).
[CrossRef] [PubMed]

Langmuir (1)

K. Ray, R. Badugu, and J. R. Lakowicz, "Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films, "Langmuir 22, 8374-8378 (2006).
[CrossRef] [PubMed]

Macromolecules (1)

D. Zhao and T. Swager, "Sensory responses in solution versus solid state: a fluorescence quenching study of poly(iptycenebutadiynylene)s," Macromolecules 38, 9377-9384 (2005).
[CrossRef]

Nat. Mater. (1)

I. L. Medintz, H. T. Udeya, E. R. Goldman, and H. Mattoussi, "Quantum dot bioconjugates for imaging, labeling and sensing," Nat. Mater. 4, 435-446 (2005).
[CrossRef] [PubMed]

Phys. Rep. (1)

G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Phys. Rev. A (1)

H. Chew, M. Kerker, and D. D. Cooke, "Electromagnetic scattering by a dielectric sphere in a diverging radiation field," Phys. Rev. A 16, 320-323 (1977).
[CrossRef]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

S. K. Gray and T. Kupka, "Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders," Phys. Rev. B 68, 045415 (2003).
[CrossRef]

Other (5)

A. Shadowitz, The Electromagnetic Field (Dover, 1988).

Reference Guide for FDTD Solutions Release 5.0 (2007), http://www.lumerical.com/fdtd.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light Particles (Wiley-Interscience, 1983).

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2000).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the model radiating fluorophore/metal nanoparticle system studied.

Fig. 2
Fig. 2

Angular distribution of light scattered around the z axis (along the x y plane) by silver nanoparticles calculated by both FDTD and Mie theory. Incident polarization is vertical (along the z axis). The incident wavelength throughout is 420 nm . Note: The intensity of the scattered radiation for 20 and 80 nm nanoparticles is 6 and 2 orders of magnitude lower, respectively, than that of the 320 nm particle, and has been offset for clarity of presentation.

Fig. 3
Fig. 3

Angular distribution of light scattered around the z axis (in the x y plane) by silver nanoparticles calculated using the FDTD method and Mie theory. Incident polarization is horizontal (along the y axis). The incident wavelength throughout is 420 nm .

Fig. 4
Fig. 4

Intensity distribution for a vertical fluorophore (oriented along the z axis) alone and near different sized silver nanoparticles calculated using the FDTD method. A value of φ = 180 ° is the direction from the nanoparticle back to the fluorophore.

Fig. 5
Fig. 5

Intensity distribution for a horizontal fluorophore (oriented along the y axis) alone and near different sized silver nanoparticles calculated using the FDTD method. A value of φ = 180 ° is the direction from the nanoparticle back to the fluorophore.

Fig. 6
Fig. 6

Intensity distribution for a normal fluorophore (oriented along the x axis) alone and near different sized silver nanoparticles calculated using the FDTD method. A value of φ = 180 ° is the direction from the nanoparticle back to the fluorophore.

Fig. 7
Fig. 7

Normalized scattered emission distribution for a vertical fluorophore (oriented along the z axis) at different distances, s, from the surface of a d = 80 nm silver nanoparticle calculated using FDTD. A distance of s = 20 nm (bold) shows the highest degree of backscattering.

Fig. 8
Fig. 8

Normalized scattered emission distribution for a horizontal fluorophore (oriented along the y axis) at different distances, s, from the surface of an 80 nm silver nanoparticle calculated using FDTD. A distance of s = 20 nm (bold) shows the highest degree of backscattering.

Fig. 9
Fig. 9

Near-field intensity distribution around (a) a d = 80 nm silver nanoparticle separated s = 10 nm from the surface of a vertical fluorophore (oriented along the z axis) calculated using the FDTD method, (b) near-field intensity distribution around the isolated fluorophore, and (c) near-field enhancement and quenching. The white circle denotes the boundary of the nanoparticle. Note all images are displayed on a log scale.

Fig. 10
Fig. 10

Near-field intensity distribution around (a) a d = 80 nm silver nanoparticle separated s = 10 nm from the surface of a normal fluorophore (oriented along the x axis) calculated using the FDTD method, (b) near-field intensity distribution around the isolated fluorophore, and (c) near-field enhancement and quenching. The white circle denotes the boundary of the nanoparticle. Note all images are displayed in the log scale.

Metrics