Abstract

A self-control mechanism that stabilizes the size of Rhodamine B-doped water microdroplets standing on a superhydrophobic surface is demonstrated. The mechanism relies on the interplay between the condensation rate that was kept constant and the evaporation rate induced by laser excitation, which critically depends on the size of the microdroplets. The radii of individual water microdroplets (>5μm) stayed within a few nano meters during long time periods (up to 455s). By blocking the laser excitation for 500ms, the stable volume of individual microdroplets was shown to change stepwise.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
    [CrossRef] [PubMed]
  2. A. Serpengüzel, J. C. Swindal, R. K. Chang, and W. P. Acker, "Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering," Appl. Opt. 31, 3543-3551 (1992).
    [CrossRef] [PubMed]
  3. R. J. Hopkins, L. Mitchem, A. D. Wardw, and J. P. Reid, "Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
    [CrossRef]
  4. L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
    [CrossRef] [PubMed]
  5. A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
    [CrossRef]
  6. S. Arnold, S. Holler, J. H. Li, A. Serpengüzel, and W. F. Auffermann, "Aerosol particle microphotography and glare-spot absorption spectroscopy," Opt. Lett. 20, 773-775 (1995).
    [CrossRef] [PubMed]
  7. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam," J. Appl. Phys. 64, 1632-1639 (1988).
    [CrossRef]
  8. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance," J. Appl. Phys. 65, 2900-2906 (1989).
    [CrossRef]
  9. J. D. Eversole, H.-B. Lin, and A. J. Campillo, "Input/output resonance correlation in laser-induced emission from microdroplets," J. Opt. Soc. Am. B 12, 287-296 (1995).
    [CrossRef]
  10. H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: a computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
    [CrossRef]
  11. G. Gouesbet, B. Maheu, and G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation," J. Opt. Soc. Am. A 5, 1427-1443 (1988).
    [CrossRef]
  12. J. A. Lock, "Improved Gaussian beam-scattering algorithm," Appl. Opt. 34, 559-570 (1995).
    [CrossRef] [PubMed]
  13. P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Optical levitation and partial-wave resonances," Phys. Rev. A 18, 2229-2233 (1978).
    [CrossRef]
  14. P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Narrow resonance structure in the Mie scattering characteristics," Appl. Opt. 17, 3019-3021 (1978).
    [CrossRef] [PubMed]
  15. E. E. M. Khaled, S. C. Hill, and P. W. Barber, "Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam," Appl. Opt. 33, 524-532 (1994).
    [CrossRef] [PubMed]
  16. G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, "Analysis of droplet evaporation on a superhydrophobic surface," Langmuir 21, 11053-11060 (2005).
    [CrossRef] [PubMed]
  17. M. Y. Yüce, A. L. Demirel, and F. Menzel, "Tuning the surface hydrophobicity of polymer/nanoparticle composite films in the wenzel regime by composition," Langmuir 21, 5073-5078 (2005).
    [CrossRef] [PubMed]
  18. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
    [CrossRef]

2006 (2)

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

2005 (2)

G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, "Analysis of droplet evaporation on a superhydrophobic surface," Langmuir 21, 11053-11060 (2005).
[CrossRef] [PubMed]

M. Y. Yüce, A. L. Demirel, and F. Menzel, "Tuning the surface hydrophobicity of polymer/nanoparticle composite films in the wenzel regime by composition," Langmuir 21, 5073-5078 (2005).
[CrossRef] [PubMed]

2004 (1)

R. J. Hopkins, L. Mitchem, A. D. Wardw, and J. P. Reid, "Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

1998 (1)

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: a computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

1995 (3)

1994 (1)

1992 (1)

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance," J. Appl. Phys. 65, 2900-2906 (1989).
[CrossRef]

1988 (2)

G. Gouesbet, B. Maheu, and G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation," J. Opt. Soc. Am. A 5, 1427-1443 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam," J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

1986 (1)

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

1978 (2)

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Narrow resonance structure in the Mie scattering characteristics," Appl. Opt. 17, 3019-3021 (1978).
[CrossRef] [PubMed]

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Optical levitation and partial-wave resonances," Phys. Rev. A 18, 2229-2233 (1978).
[CrossRef]

Acker, W. P.

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance," J. Appl. Phys. 65, 2900-2906 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam," J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

Aqil, S.

G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, "Analysis of droplet evaporation on a superhydrophobic surface," Langmuir 21, 11053-11060 (2005).
[CrossRef] [PubMed]

Arnold, S.

Auffermann, W. F.

Barber, P. W.

E. E. M. Khaled, S. C. Hill, and P. W. Barber, "Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam," Appl. Opt. 33, 524-532 (1994).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance," J. Appl. Phys. 65, 2900-2906 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam," J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Buajarern, J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

Campillo, A. J.

Chang, R. K.

A. Serpengüzel, J. C. Swindal, R. K. Chang, and W. P. Acker, "Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering," Appl. Opt. 31, 3543-3551 (1992).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Chylek, P.

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Narrow resonance structure in the Mie scattering characteristics," Appl. Opt. 17, 3019-3021 (1978).
[CrossRef] [PubMed]

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Optical levitation and partial-wave resonances," Phys. Rev. A 18, 2229-2233 (1978).
[CrossRef]

Corkan, A.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: a computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Demirel, A. L.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

M. Y. Yüce, A. L. Demirel, and F. Menzel, "Tuning the surface hydrophobicity of polymer/nanoparticle composite films in the wenzel regime by composition," Langmuir 21, 5073-5078 (2005).
[CrossRef] [PubMed]

Du, H.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: a computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Dündar, M. A.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Erbil, H. Y.

G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, "Analysis of droplet evaporation on a superhydrophobic surface," Langmuir 21, 11053-11060 (2005).
[CrossRef] [PubMed]

Eversole, J. D.

Fuh, R. A.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: a computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Gilham, R. J. J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

Gouesbet, G.

Grehan, G.

Hill, S. C.

Holler, S.

Hopkins, R. J.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Wardw, and J. P. Reid, "Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Johnston, R. L.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

Khaled, E. E. M.

Kiehl, J. T.

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Optical levitation and partial-wave resonances," Phys. Rev. A 18, 2229-2233 (1978).
[CrossRef]

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Narrow resonance structure in the Mie scattering characteristics," Appl. Opt. 17, 3019-3021 (1978).
[CrossRef] [PubMed]

Kiraz, A.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Ko, M. K. W.

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Optical levitation and partial-wave resonances," Phys. Rev. A 18, 2229-2233 (1978).
[CrossRef]

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Narrow resonance structure in the Mie scattering characteristics," Appl. Opt. 17, 3019-3021 (1978).
[CrossRef] [PubMed]

Kurt, A.

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Li, J.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: a computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Li, J. H.

Lin, H.-B.

Lindsey, J. S.

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: a computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Lock, J. A.

Maheu, B.

McHale, G.

G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, "Analysis of droplet evaporation on a superhydrophobic surface," Langmuir 21, 11053-11060 (2005).
[CrossRef] [PubMed]

Menzel, F.

M. Y. Yüce, A. L. Demirel, and F. Menzel, "Tuning the surface hydrophobicity of polymer/nanoparticle composite films in the wenzel regime by composition," Langmuir 21, 5073-5078 (2005).
[CrossRef] [PubMed]

Mitchem, L.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Wardw, and J. P. Reid, "Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Newton, M. I.

G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, "Analysis of droplet evaporation on a superhydrophobic surface," Langmuir 21, 11053-11060 (2005).
[CrossRef] [PubMed]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Qian, S.-X.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Reid, J. P.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Wardw, and J. P. Reid, "Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance," J. Appl. Phys. 65, 2900-2906 (1989).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam," J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

Serpengüzel, A.

Shirtcliffe, N. J.

G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, "Analysis of droplet evaporation on a superhydrophobic surface," Langmuir 21, 11053-11060 (2005).
[CrossRef] [PubMed]

Snow, J. B.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Swindal, J. C.

Tzeng, H. M.

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Ward, A. D.

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

Wardw, A. D.

R. J. Hopkins, L. Mitchem, A. D. Wardw, and J. P. Reid, "Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Yüce, M. Y.

M. Y. Yüce, A. L. Demirel, and F. Menzel, "Tuning the surface hydrophobicity of polymer/nanoparticle composite films in the wenzel regime by composition," Langmuir 21, 5073-5078 (2005).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, "Simple largely tunable optical microcavity," Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

J. Appl. Phys. (2)

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam," J. Appl. Phys. 64, 1632-1639 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Internal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance," J. Appl. Phys. 65, 2900-2906 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

L. Mitchem, J. Buajarern, R. J. Hopkins, A. D. Ward, R. J. J. Gilham, R. L. Johnston, and J. P. Reid, "A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation," J. Phys. Chem. A 110, 8116-8125 (2006).
[CrossRef] [PubMed]

Langmuir (2)

G. McHale, S. Aqil, N. J. Shirtcliffe, M. I. Newton, and H. Y. Erbil, "Analysis of droplet evaporation on a superhydrophobic surface," Langmuir 21, 11053-11060 (2005).
[CrossRef] [PubMed]

M. Y. Yüce, A. L. Demirel, and F. Menzel, "Tuning the surface hydrophobicity of polymer/nanoparticle composite films in the wenzel regime by composition," Langmuir 21, 5073-5078 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (1)

H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, "PhotochemCAD: a computer-aided design and research tool in photochemistry," Photochem. Photobiol. 68, 141-142 (1998).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

R. J. Hopkins, L. Mitchem, A. D. Wardw, and J. P. Reid, "Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap," Phys. Chem. Chem. Phys. 6, 4924-4927 (2004).
[CrossRef]

Phys. Rev. A (1)

P. Chylek, J. T. Kiehl, and M. K. W. Ko, "Optical levitation and partial-wave resonances," Phys. Rev. A 18, 2229-2233 (1978).
[CrossRef]

Phys. Rev. Lett. (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Science (1)

S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated absorption efficiency ( Q abs ) and modified absorption efficiency ( Q ̃ abs ) as a function of radius ( R ) for a sphere having refractive index n = 1.33 + 4 × 10 5 i . (a) Plane-wave illumination with transverse polarization. (b) and (c) Focused Gaussian beam illumination with linear polarization along x direction. Focus is positioned away from the center of the sphere along the x direction at a distance of (b) 6200 nm and (c) 5800 nm . All the waves propagate along the z direction.

Fig. 2
Fig. 2

Contour plots show the consecutive emission spectra taken from a microdroplet demonstrating volume stabilization at acquisition 16. The radius of the microdroplet is 5.7 μ m before acquisition 1. The excitation intensity is 2.7 μ W . The focus is positioned in the vicinity of the rim away from the center along the x direction. Intensity values in arbitrary units increase from blue to red. Each consecutive segment of 20 acquisitions are separated by < 1 s period. The line plot shows the fluorescence spectrum obtained by averaging the spectra between acquisitions 16 to 160. The inset shows the fluorescence image of the microdroplet.

Fig. 3
Fig. 3

Contour plots of emission spectra taken from a microdroplet demonstrating volume stabilization at consecutive stable equilibrium points. The radius of the microdroplet is 5.4 μ m before acquisition 1. The excitation intensity is 1.5 μ W . The focus is positioned in the vicinity of the rim away from the center along the x direction. Intensity values in arbitrary units increase from blue to red. Each consecutive segment of 40 acquisitions are separated by < 1 s period. The arrow indicates the direction of spectral drift between consecutive stable equilibrium points.

Fig. 4
Fig. 4

Contour plot of emission spectra from a continuously shrinking microdroplet. The radius of the microdroplet is 8.9 μ m before acquisition 1. The excitation intensity is 1.9 μ W . The focus is positioned in the vicinity of the rim away from the center along the x direction. Intensity values in arbitrary units increase from blue to red.

Fig. 5
Fig. 5

Contour plots of emission spectra from a microdroplet growing continuously in size. The radius is determined to be 5.2 μ m before acquisition 1 in (a). The focus is positioned away from the center along the x direction at a distance of 2.6 μ m . The excitation intensities are 2.5 and 3.0 μ W in (a) and (b), respectively. Intensity values in arbitrary units increase from blue to red.

Metrics