Abstract

The results of pilot experiments carried out at the new infrared beamline SISSI (Source for Imaging and Spectroscopic Studies in the Infrared) operated at the synchrotron laboratory ELETTRA in Trieste, Italy, are presented and compared with the results obtained with conventional IR sources. The main figures of merit of the infrared synchrotron radiation (IRSR) such as brightness, spectral quality, and stability are discussed. Using a pinhole scanned across the IRSR beam, the effective beam size, the intensity, and the lateral distribution for different wavelengths are determined. The results obtained on geological and biological samples are used to illustrate how the broadband nature and high brightness of the IRSR beam allow IR spectroscopy experiments on diffraction-limited sample areas in both the mid-IR and far-IR regions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan and G. P. Williams, "Infrared synchrotron radiation from electron storage rings," Appl. Opt. 22, 2914-2923 (1983).
    [CrossRef] [PubMed]
  2. See, for example, Infrared Synchrotron Radiation, P.Calvani and P.Roy, eds. (Compositori, 1998), and references therein.
  3. Accelerator-Based Sources of Infrared and Spectroscopic Applications, Proc. SPIE 3775 (1999).
  4. P. Dumas and M. Tobin, "A bright source for infrared microspectroscopy: synchrotron radiation," Spectroscopy Europe 15, 17-23 (2003).
  5. L. Miller and P. Dumas, "The use of synchrotron infrared microspectroscopy in biological and biomedical investigations," Vib. Spectrosc. 32, 3-21 (2003).
    [CrossRef]
  6. A. E. Goncharov, F. Gregoryanz, H. K. Mao, Z. X. Liu, and R. J. Hemley, "Optical evidence for a nonmolecular phase of nitrogen above 150 GPa," Phys. Rev. Lett. 85, 1262-1265 (2000).
    [CrossRef] [PubMed]
  7. N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
    [CrossRef] [PubMed]
  8. A. Grant, T. J. Wilkinson, D. R. Holman, M. C. Martin, "Identification of recently handled materials by analysis of latent human fingerprints using infrared spectroscopy," Appl. Spectrosc. 59, 1182-1187 (2005).
    [CrossRef] [PubMed]
  9. A. Nucara, S. Lupi, and P. Calvani, "The infrared synchrotron radiation beamline at the third-generation light source ELETTRA," Rev. Sci. Instrum. 74, 3934-3942 (2003).
    [CrossRef]
  10. J. M. Byrd, M. C. Martin, and W. R. McKinney, in "Observing beam motion using infrared interferometry," Proceedings of Particle Accelerator Conference, A.Luccio and W.MacKay, eds. (IEEE, 1999), pp. 495-497.
  11. E. Karantzoulis, Sincrotrone Trieste, 34102 Trieste, Italy, (personal communication, 2006).
  12. J. M. Byrd, "Effects of phase noise in heavily beam loaded storage rings," in Proceedings of Particle Accelerator Conference, A.Luccio and W.MacKay, eds. (IEEE, 1999), pp. 1806-1809.
  13. J. M. Byrd, M. Chin, M. C. Martin, W. R. McKinney, and R. Miller, Proc. SPIE 3775, 58-64 (1999).
    [CrossRef]

2005 (2)

N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
[CrossRef] [PubMed]

A. Grant, T. J. Wilkinson, D. R. Holman, M. C. Martin, "Identification of recently handled materials by analysis of latent human fingerprints using infrared spectroscopy," Appl. Spectrosc. 59, 1182-1187 (2005).
[CrossRef] [PubMed]

2003 (3)

A. Nucara, S. Lupi, and P. Calvani, "The infrared synchrotron radiation beamline at the third-generation light source ELETTRA," Rev. Sci. Instrum. 74, 3934-3942 (2003).
[CrossRef]

P. Dumas and M. Tobin, "A bright source for infrared microspectroscopy: synchrotron radiation," Spectroscopy Europe 15, 17-23 (2003).

L. Miller and P. Dumas, "The use of synchrotron infrared microspectroscopy in biological and biomedical investigations," Vib. Spectrosc. 32, 3-21 (2003).
[CrossRef]

2000 (1)

A. E. Goncharov, F. Gregoryanz, H. K. Mao, Z. X. Liu, and R. J. Hemley, "Optical evidence for a nonmolecular phase of nitrogen above 150 GPa," Phys. Rev. Lett. 85, 1262-1265 (2000).
[CrossRef] [PubMed]

1999 (1)

J. M. Byrd, M. Chin, M. C. Martin, W. R. McKinney, and R. Miller, Proc. SPIE 3775, 58-64 (1999).
[CrossRef]

1983 (1)

But, S.

N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
[CrossRef] [PubMed]

Byrd, J. M.

J. M. Byrd, M. Chin, M. C. Martin, W. R. McKinney, and R. Miller, Proc. SPIE 3775, 58-64 (1999).
[CrossRef]

J. M. Byrd, M. C. Martin, and W. R. McKinney, in "Observing beam motion using infrared interferometry," Proceedings of Particle Accelerator Conference, A.Luccio and W.MacKay, eds. (IEEE, 1999), pp. 495-497.

J. M. Byrd, "Effects of phase noise in heavily beam loaded storage rings," in Proceedings of Particle Accelerator Conference, A.Luccio and W.MacKay, eds. (IEEE, 1999), pp. 1806-1809.

Calvani, P.

A. Nucara, S. Lupi, and P. Calvani, "The infrared synchrotron radiation beamline at the third-generation light source ELETTRA," Rev. Sci. Instrum. 74, 3934-3942 (2003).
[CrossRef]

Chin, M.

J. M. Byrd, M. Chin, M. C. Martin, W. R. McKinney, and R. Miller, Proc. SPIE 3775, 58-64 (1999).
[CrossRef]

Dumas, P.

L. Miller and P. Dumas, "The use of synchrotron infrared microspectroscopy in biological and biomedical investigations," Vib. Spectrosc. 32, 3-21 (2003).
[CrossRef]

P. Dumas and M. Tobin, "A bright source for infrared microspectroscopy: synchrotron radiation," Spectroscopy Europe 15, 17-23 (2003).

Duncan, M. D.

Goncharov, A. E.

A. E. Goncharov, F. Gregoryanz, H. K. Mao, Z. X. Liu, and R. J. Hemley, "Optical evidence for a nonmolecular phase of nitrogen above 150 GPa," Phys. Rev. Lett. 85, 1262-1265 (2000).
[CrossRef] [PubMed]

Grant, A.

Gregoryanz, F.

A. E. Goncharov, F. Gregoryanz, H. K. Mao, Z. X. Liu, and R. J. Hemley, "Optical evidence for a nonmolecular phase of nitrogen above 150 GPa," Phys. Rev. Lett. 85, 1262-1265 (2000).
[CrossRef] [PubMed]

Hemley, R. J.

A. E. Goncharov, F. Gregoryanz, H. K. Mao, Z. X. Liu, and R. J. Hemley, "Optical evidence for a nonmolecular phase of nitrogen above 150 GPa," Phys. Rev. Lett. 85, 1262-1265 (2000).
[CrossRef] [PubMed]

Holman, D. R.

Karantzoulis, E.

E. Karantzoulis, Sincrotrone Trieste, 34102 Trieste, Italy, (personal communication, 2006).

Liu, Z. X.

A. E. Goncharov, F. Gregoryanz, H. K. Mao, Z. X. Liu, and R. J. Hemley, "Optical evidence for a nonmolecular phase of nitrogen above 150 GPa," Phys. Rev. Lett. 85, 1262-1265 (2000).
[CrossRef] [PubMed]

Lupi, S.

A. Nucara, S. Lupi, and P. Calvani, "The infrared synchrotron radiation beamline at the third-generation light source ELETTRA," Rev. Sci. Instrum. 74, 3934-3942 (2003).
[CrossRef]

Mao, H. K.

A. E. Goncharov, F. Gregoryanz, H. K. Mao, Z. X. Liu, and R. J. Hemley, "Optical evidence for a nonmolecular phase of nitrogen above 150 GPa," Phys. Rev. Lett. 85, 1262-1265 (2000).
[CrossRef] [PubMed]

Martin, M. C.

A. Grant, T. J. Wilkinson, D. R. Holman, M. C. Martin, "Identification of recently handled materials by analysis of latent human fingerprints using infrared spectroscopy," Appl. Spectrosc. 59, 1182-1187 (2005).
[CrossRef] [PubMed]

J. M. Byrd, M. Chin, M. C. Martin, W. R. McKinney, and R. Miller, Proc. SPIE 3775, 58-64 (1999).
[CrossRef]

J. M. Byrd, M. C. Martin, and W. R. McKinney, in "Observing beam motion using infrared interferometry," Proceedings of Particle Accelerator Conference, A.Luccio and W.MacKay, eds. (IEEE, 1999), pp. 495-497.

McKinney, W. R.

J. M. Byrd, M. Chin, M. C. Martin, W. R. McKinney, and R. Miller, Proc. SPIE 3775, 58-64 (1999).
[CrossRef]

J. M. Byrd, M. C. Martin, and W. R. McKinney, in "Observing beam motion using infrared interferometry," Proceedings of Particle Accelerator Conference, A.Luccio and W.MacKay, eds. (IEEE, 1999), pp. 495-497.

Miller, L.

L. Miller and P. Dumas, "The use of synchrotron infrared microspectroscopy in biological and biomedical investigations," Vib. Spectrosc. 32, 3-21 (2003).
[CrossRef]

Miller, R.

J. M. Byrd, M. Chin, M. C. Martin, W. R. McKinney, and R. Miller, Proc. SPIE 3775, 58-64 (1999).
[CrossRef]

Nucara, A.

A. Nucara, S. Lupi, and P. Calvani, "The infrared synchrotron radiation beamline at the third-generation light source ELETTRA," Rev. Sci. Instrum. 74, 3934-3942 (2003).
[CrossRef]

Pantos, E.

N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
[CrossRef] [PubMed]

Pradell, T.

N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
[CrossRef] [PubMed]

Prag, A. J. N. W.

N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
[CrossRef] [PubMed]

Salvado, N.

N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
[CrossRef] [PubMed]

Tobin, M.

P. Dumas and M. Tobin, "A bright source for infrared microspectroscopy: synchrotron radiation," Spectroscopy Europe 15, 17-23 (2003).

Tobin, M. J.

N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
[CrossRef] [PubMed]

Wilkinson, T. J.

Williams, G. P.

Anal. Chem. (1)

N. Salvado, S. But, M. J. Tobin, E. Pantos, A. J. N. W. Prag, and T. Pradell, "Advantages of the use of SR-FT-IR microspectroscopy; applications to cultural heritage," Anal. Chem. 77, 3444-3457 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Phys. Rev. Lett. (1)

A. E. Goncharov, F. Gregoryanz, H. K. Mao, Z. X. Liu, and R. J. Hemley, "Optical evidence for a nonmolecular phase of nitrogen above 150 GPa," Phys. Rev. Lett. 85, 1262-1265 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. M. Byrd, M. Chin, M. C. Martin, W. R. McKinney, and R. Miller, Proc. SPIE 3775, 58-64 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Nucara, S. Lupi, and P. Calvani, "The infrared synchrotron radiation beamline at the third-generation light source ELETTRA," Rev. Sci. Instrum. 74, 3934-3942 (2003).
[CrossRef]

Spectroscopy Europe (1)

P. Dumas and M. Tobin, "A bright source for infrared microspectroscopy: synchrotron radiation," Spectroscopy Europe 15, 17-23 (2003).

Vib. Spectrosc. (1)

L. Miller and P. Dumas, "The use of synchrotron infrared microspectroscopy in biological and biomedical investigations," Vib. Spectrosc. 32, 3-21 (2003).
[CrossRef]

Other (5)

See, for example, Infrared Synchrotron Radiation, P.Calvani and P.Roy, eds. (Compositori, 1998), and references therein.

Accelerator-Based Sources of Infrared and Spectroscopic Applications, Proc. SPIE 3775 (1999).

J. M. Byrd, M. C. Martin, and W. R. McKinney, in "Observing beam motion using infrared interferometry," Proceedings of Particle Accelerator Conference, A.Luccio and W.MacKay, eds. (IEEE, 1999), pp. 495-497.

E. Karantzoulis, Sincrotrone Trieste, 34102 Trieste, Italy, (personal communication, 2006).

J. M. Byrd, "Effects of phase noise in heavily beam loaded storage rings," in Proceedings of Particle Accelerator Conference, A.Luccio and W.MacKay, eds. (IEEE, 1999), pp. 1806-1809.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Layout of the IRSR beamline SISSI at ELETTRA.

Fig. 2
Fig. 2

Ratios between two subsequent reflectance spectra for different microscope apertures and for the IRSR from both SISSI (top) and the globar (bottom).

Fig. 3
Fig. 3

Ratio between the detected intensity I and the root mean square rms of the 100% line in Fig. 2 (between 1100 and 1200 cm 1 ) for both the IRSR and the globar source and for different microscope apertures. The reported values are normalized to the I rms of the globar radiation through the smallest aperture. The curves are just guides to the eye.

Fig. 4
Fig. 4

Beam profile at the microscope focal point for synchrotron radiation at a beam current of 170 mA and 2 GeV . The measurement was performed in transmission mode through a 10 μ m pinhole. Spectra were integrated between 600 and 8000 cm 1 .

Fig. 5
Fig. 5

The ratio between the detected intensity I and the rms of the 100% line (between 100 and 350 cm 1 ) for both the IRSR beam and the globar source and for different apertures. The inset shows the intensity I integrated between 100 and 400 cm 1 for both radiations. The dotted curves are only guides to the eye.

Fig. 6
Fig. 6

Spectrum of the IRSR emission as a function of the distance from the beam center along the direction x shown in the inset. To perform the map, a 300 μ m pinhole was displaced through the beam in steps of 150 μ m . Both the dip in the intensity at about 400 cm 1 and the peak around 200 cm 1 reflect the transfer function of the experimental setup (interferometer, bolometer, and beam splitter).

Fig. 7
Fig. 7

Mid-IR reflectance spectra of the gold film shown in the figure (top panel), which includes areas (circles 7 μ m in diameter) of the bare Si 3 N 4 substrate. The spectra were collected with a 1 μ m step along the line marked in the top panel using the motorized sample stage. The microscope aperture was 4 μ m × 4 μ m , the resolution 8 cm 1 , and 64 scans were accumulated using both the globar and the IRSR. Scans at three selected frequencies for the globar (red) and the IRSR (blue) are shown. The minima in the reflectivity correspond to the circles. With this optical setup, which has a numerical aperture of 0.5, the diffraction limit is 2.7, 6.7, and 13 μ m at the wavelengths in a, b, and c, respectively.

Fig. 8
Fig. 8

(a) Visible image of the inclusion as recorded by the microscope camera. (b) Infrared map of liquid water obtained by integrating the absorbance between 3000 and 3600 cm 1 . (c) Infrared map of C O 2 obtained by integrating the absorbance between 2250 and 2500 cm 1 . The maps in b and c are made up of 20 × 16   pixels obtained by mapping with a 2 μ m step.

Fig. 9
Fig. 9

Images of a formalin fixed cell. (a) Distribution of amide band absorption between 1500 and 1700 cm 1 . (b) Distribution of methyl/methylene band absorption between 2800 and 3000 cm 1 . (c) Visible light image.

Metrics