Abstract

A system of coupled quantum harmonic oscillators whose Hamiltonian conserves photon number begets a one-photon correspondence principle (OPCoP), which allows solutions to the classical linear Maxwell equations for propagation in matter to be reinterpreted as precise descriptions of one-photon states. With the help of the OPCoP, we derive the linear classical Maxwell equations from the Schrödinger equation for one-polariton state evolution. The role of the matter’s initial quantum state in setting the macroscopic medium parameters is made explicit. It is shown that most of the kinds of linear Maxwell equations possible follow from this model, thus showing that the vast extant body of linear, sourceless optical waveguide theory [Optical Waveguide Theory (Chapman and Hall, 1983)] can be applied to the exact analysis of one-photon propagation in optical fibers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (161)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription