C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[CrossRef]

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

N. A. Rejesh, H. Pullagurla, and M. Pramanik, “Deconvolution based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography,” J. Opt. Soc. Am. A 30, 1994–2001 (2013).

[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).

[CrossRef]

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).

[CrossRef]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).

[CrossRef]

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

[CrossRef]

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).

[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).

[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).

[CrossRef]

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).

[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).

[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).

[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).

[CrossRef]

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).

[CrossRef]

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).

[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).

[CrossRef]

M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

[CrossRef]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

[CrossRef]

M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

[CrossRef]

M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).

[CrossRef]

M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).

[CrossRef]

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).

[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).

[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).

[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).

[CrossRef]

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).

[CrossRef]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).

[CrossRef]

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).

[CrossRef]

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

[CrossRef]

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).

[CrossRef]

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).

[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).

[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).

[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).

[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).

[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).

[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).

[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).

[CrossRef]

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

[CrossRef]

G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).

[CrossRef]

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).

[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).

[CrossRef]

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).

[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).

[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).

[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).

[CrossRef]

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).

[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).

[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).

[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).

[CrossRef]

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).

[CrossRef]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).

[CrossRef]

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).

[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).

[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).

[CrossRef]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

N. A. Rejesh, H. Pullagurla, and M. Pramanik, “Deconvolution based deblurring of reconstructed images in photoacoustic/thermoacoustic tomography,” J. Opt. Soc. Am. A 30, 1994–2001 (2013).

[CrossRef]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).

[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).

[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).

[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).

[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).

[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).

[CrossRef]

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).

[CrossRef]

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).

[CrossRef]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).

[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).

[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).

[CrossRef]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

[CrossRef]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).

[CrossRef]

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).

[CrossRef]

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).

[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).

[CrossRef]

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).

[CrossRef]

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).

[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).

[CrossRef]

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).

[CrossRef]

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).

[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).

[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).

[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).

[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).

[CrossRef]

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

[CrossRef]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

[CrossRef]

M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

[CrossRef]

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).

[CrossRef]

M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).

G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).

[CrossRef]

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).

[CrossRef]

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).

[CrossRef]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).

[CrossRef]

W. Xia, D. Piras, M. K. A. Singh, J. C. G. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4, 2555–2569 (2013).

[CrossRef]

G. Ku, X. D. Wang, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography,” Appl. Opt. 44, 770–775 (2005).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

[CrossRef]

M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

[CrossRef]

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

[CrossRef]

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).

M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).

[CrossRef]

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[CrossRef]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).

[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).

[CrossRef]

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

C. H. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93, 033902 (2008).

[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).

[CrossRef]

M. H. Xu and L. H. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814–822 (2002).

Y. Xu, D. Z. Feng, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. I: planar geometry,” IEEE Trans. Med. Imaging 21, 823–828 (2002).

Y. Xu, M. H. Xu, and L. H. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography. II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829–833 (2002).

M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Ku, and L. H. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imaging 24, 199–210 (2005).

C. Huang, K. Wang, L. Nie, L. H. V. Wang, and M. A. Anastasio, “Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media,” IEEE Trans. Med. Imaging 32, 1097–1110 (2013).

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008).

[CrossRef]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).

[CrossRef]

M. Pramanik, G. Ku, and L. H. V. Wang, “Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens,” J. Biomed. Opt. 14, 024028 (2009).

[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).

[CrossRef]

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).

[CrossRef]

C. H. Li, L. H. V. Wang, A. Aguirre, J. Gamelin, A. Maurudis, and Q. Zhu, “Real-time photoacoustic tomography of cortical hemodynamics in small animals,” J. Biomed. Opt. 15, 010509 (2010).

[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).

[CrossRef]

G. Ku and L. H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).

[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).

[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).

[CrossRef]

M. Omar, S. Kellnberger, G. Sergiadis, D. Razansky, and V. Ntziachristos, “Near-field thermoacoustic imaging with transmission line pulsers,” Med. Phys. 39, 4460–4466 (2012).

[CrossRef]

M. H. Xu and L. H. V. Wang, “Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration,” Med. Phys. 29, 1661–1669 (2002).

[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).

[CrossRef]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, and S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1, 9–18 (2013).

[CrossRef]

K. Wang, R. Su, A. A. Oraevsky, and M. A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol. 57, 5399–5423 (2012).

[CrossRef]

C. H. Li, G. Ku, and L. H. V. Wang, “Negative lens concept for photoacoustic tomography,” Phys. Rev. E 78, 021901 (2008).

[CrossRef]

M. H. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

[CrossRef]

M. Xu and L. H. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005).

[CrossRef]

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser, “Thermoacoustic CT with radio waves: a medical imaging paradigm,” Radiology 211, 275–278 (1999).

[CrossRef]

L. H. V. Wang, X. M. Zhao, H. T. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 3744–3748 (1999).

[CrossRef]

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).

[CrossRef]

G. Ku, B. D. Fornage, X. Jin, M. H. Xu, K. K. Hunt, and L. H. V. Wang, “Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging,” Technol. Cancer Res. T. 4, 559–565 (2005).

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Quantitative photoacoustic tomography with model-resolution based basis pursuit deconvolution,” Biomed. Opt. Express (submitted).