Abstract

Since the origin of the high interindividual variability of the chromatic difference in retinal image magnification (CDM) in the human eye is not well understood, optical parameters that might determine its magnitude were studied in 21 healthy subjects with ages ranging from 21 to 58 years. Two psychophysical procedures were used to quantify CDM. They produced highly correlated results. First, a red and a blue square, presented on a black screen, had to be matched in size by the subjects with their right eyes. Second, a filled red and blue square, flickering on top of each other at 2 Hz, had to be adjusted in perceived brightness and then in size to minimize the impression of flicker. CDM varied widely among subjects from 0.0% to 3.6%. Biometric ocular parameters were measured with low coherence interferometry and crystalline lens tilt and decentration with a custom-built Purkinjemeter. Correlations were studied between CDM and corneal power, anterior chamber depth, lens thickness, lens tilt and lens decentration, and vitreous chamber depths. Lens thickness was found significantly correlated with CDM and accounted for 64% of its variance. Vertical lens tilt and decentration were also significantly correlated. It was also found that CDM increased by 3.5% per year, and part of this change can be attributed to the age-related increase in lens thickness.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
    [CrossRef]
  2. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
    [CrossRef]
  3. A. van Meeteren and C. J. Dunnewold, “Image quality of the human eye for eccentric entrance pupils,” Vis. Res. 23, 573–579 (1983).
    [CrossRef]
  4. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
    [CrossRef]
  5. B. Howland and H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
    [CrossRef]
  6. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
    [CrossRef]
  7. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001).
    [CrossRef]
  8. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
    [CrossRef]
  9. P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vis. Res. 30, 187–206 (1990).
    [CrossRef]
  10. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30, 33–49 (1990).
    [CrossRef]
  11. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [CrossRef]
  12. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [CrossRef]
  13. A. Ivanoff, Les aberrations de l’œil (Éditions de la Revue d’optique théorique et instrumentale, 1953).
  14. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
    [CrossRef]
  15. L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
    [CrossRef]
  16. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947).
    [CrossRef]
  17. X. X. Zhang, L. N. Thibos, and A. Bradley, “Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vis. Sci. 68, 456–458 (1991).
  18. X. Zhang, A. Bradley, and L. N. Thibos, “Experimental determination of the chromatic difference of magnification of the human eye and the location of the anterior nodal point,” J. Opt. Soc. Am. A 10, 213–220 (1993).
    [CrossRef]
  19. F. W. Campbell, J. Nachmias, and J. Jukes, “Spatial-frequency discrimination in human vision,” J. Opt. Soc. Am. 60, 555–559 (1970).
  20. F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008).
    [CrossRef]
  21. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
    [CrossRef]
  22. H. Littmann, “Grundlegende Betrachtungen zur Ophthalmometrie,” Albrecht v. Graefes Arch. Ophthalmol. 151, 249–274 (1951).
  23. F. Schaeffel and H. C. Howland, “Mathematical model of emmetropization in the chicken,” J. Opt. Soc. Am. A 5, 2080–2086 (1988).
    [CrossRef]
  24. H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc. Lond. 232, 519–671 (1947).
  25. K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
    [CrossRef]
  26. J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).
  27. K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalm. Physiol. Opt. 28, 441–447 (2008).
    [CrossRef]
  28. R. Navarro, F. Palos, and L. Gonzalez, “Adaptive model of the gradient index of the human lens. I. formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A 24, 2175–2185 (2007).
    [CrossRef]
  29. L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).
  30. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78, 411–416 (2001).
    [CrossRef]
  31. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).
  32. S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investig. Ophthalmol. Vis. Sci. 49, 2531–2540 (2008).
    [CrossRef]
  33. A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
    [CrossRef]
  34. B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vis. Res. 42, 1683–1693 (2002).
    [CrossRef]
  35. B. Jaeken, L. Lundstrom, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
    [CrossRef]
  36. A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics, 2nd ed. (Butterworths, 1984).

2013 (1)

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

2012 (1)

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).

2011 (2)

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

B. Jaeken, L. Lundstrom, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[CrossRef]

2008 (3)

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investig. Ophthalmol. Vis. Sci. 49, 2531–2540 (2008).
[CrossRef]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalm. Physiol. Opt. 28, 441–447 (2008).
[CrossRef]

F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008).
[CrossRef]

2007 (1)

2005 (2)

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[CrossRef]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).

2002 (2)

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vis. Res. 42, 1683–1693 (2002).
[CrossRef]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

2001 (2)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

1999 (2)

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

1993 (1)

1992 (1)

1991 (1)

X. X. Zhang, L. N. Thibos, and A. Bradley, “Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vis. Sci. 68, 456–458 (1991).

1990 (2)

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vis. Res. 30, 187–206 (1990).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30, 33–49 (1990).
[CrossRef]

1988 (1)

1987 (2)

1983 (1)

A. van Meeteren and C. J. Dunnewold, “Image quality of the human eye for eccentric entrance pupils,” Vis. Res. 23, 573–579 (1983).
[CrossRef]

1976 (1)

B. Howland and H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef]

1970 (1)

1957 (1)

1951 (1)

H. Littmann, “Grundlegende Betrachtungen zur Ophthalmometrie,” Albrecht v. Graefes Arch. Ophthalmol. 151, 249–274 (1951).

1947 (2)

H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc. Lond. 232, 519–671 (1947).

G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–336 (1947).
[CrossRef]

Artal, P.

B. Jaeken, L. Lundstrom, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[CrossRef]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

Atchison, D. A.

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investig. Ophthalmol. Vis. Sci. 49, 2531–2540 (2008).
[CrossRef]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[CrossRef]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vis. Res. 42, 1683–1693 (2002).
[CrossRef]

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001).
[CrossRef]

Bedell, H. E.

Bedford, R. E.

Benito, A.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

Bennett, A. G.

A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics, 2nd ed. (Butterworths, 1984).

Borja, D.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

Bradley, A.

X. Zhang, A. Bradley, and L. N. Thibos, “Experimental determination of the chromatic difference of magnification of the human eye and the location of the anterior nodal point,” J. Opt. Soc. Am. A 10, 213–220 (1993).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef]

X. X. Zhang, L. N. Thibos, and A. Bradley, “Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vis. Sci. 68, 456–458 (1991).

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30, 33–49 (1990).
[CrossRef]

Brennan, N. A.

Bullimore, M. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalm. Physiol. Opt. 28, 441–447 (2008).
[CrossRef]

Burns, S. A.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

Campbell, F. W.

Campbell, M. C.

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vis. Res. 30, 187–206 (1990).
[CrossRef]

Castejon-Mochon, J. F.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

Chisholm, W.

de Castro, A.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

DeMarco, J. K.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

Dunnewold, C. J.

A. van Meeteren and C. J. Dunnewold, “Image quality of the human eye for eccentric entrance pupils,” Vis. Res. 23, 573–579 (1983).
[CrossRef]

Glasser, A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

Gonzalez, L.

Griffin, D. R.

Gronlund-Jacob, J.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).

Hartridge, H.

H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc. Lond. 232, 519–671 (1947).

Hayes, J. R.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).

He, J. C.

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30, 33–49 (1990).
[CrossRef]

Howland, B.

B. Howland and H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef]

Howland, H. C.

F. Schaeffel and H. C. Howland, “Mathematical model of emmetropization in the chicken,” J. Opt. Soc. Am. A 5, 2080–2086 (1988).
[CrossRef]

B. Howland and H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef]

Ivanoff, A.

A. Ivanoff, Les aberrations de l’œil (Éditions de la Revue d’optique théorique et instrumentale, 1953).

Jaeken, B.

Jones, L. A.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).

Jukes, J.

Kao, C. Y.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

Kasthurirangan, S.

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investig. Ophthalmol. Vis. Sci. 49, 2531–2540 (2008).
[CrossRef]

Lidkea, B.

Liou, H. L.

Littmann, H.

H. Littmann, “Grundlegende Betrachtungen zur Ophthalmometrie,” Albrecht v. Graefes Arch. Ophthalmol. 151, 249–274 (1951).

Lopez-Gil, N.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

Lundstrom, L.

Manns, F.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

Marcos, S.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

Markwell, E. L.

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investig. Ophthalmol. Vis. Sci. 49, 2531–2540 (2008).
[CrossRef]

Mitchell, G. L.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).

Moeschberger, M. L.

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).

Moffat, B. A.

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vis. Res. 42, 1683–1693 (2002).
[CrossRef]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[CrossRef]

Munoz, P.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).

Mutti, D. O.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).

Nachmias, J.

Navarro, R.

R. Navarro, F. Palos, and L. Gonzalez, “Adaptive model of the gradient index of the human lens. I. formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A 24, 2175–2185 (2007).
[CrossRef]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[CrossRef]

Ogboso, Y. U.

Palos, F.

Parel, J.-M.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

Patz, S.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

Pope, J. M.

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investig. Ophthalmol. Vis. Sci. 49, 2531–2540 (2008).
[CrossRef]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vis. Res. 42, 1683–1693 (2002).
[CrossRef]

Prieto, P. M.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001).
[CrossRef]

Rabbetts, R. B.

A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics, 2nd ed. (Butterworths, 1984).

Richdale, K.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalm. Physiol. Opt. 28, 441–447 (2008).
[CrossRef]

Rozema, J. J.

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).

Rynders, M.

Schaeffel, F.

F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008).
[CrossRef]

F. Schaeffel and H. C. Howland, “Mathematical model of emmetropization in the chicken,” J. Opt. Soc. Am. A 5, 2080–2086 (1988).
[CrossRef]

Schmalbrock, P.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

Semmlow, J. L.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).

Siedlecki, D.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

Simonet, P.

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vis. Res. 30, 187–206 (1990).
[CrossRef]

Sinnott, L. T.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

Smith, G.

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30, 33–49 (1990).
[CrossRef]

Strenk, L. M.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).

Strenk, S. A.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).

Tassignon, M. J.

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).

Thibos, L. N.

Uhlhorn, S.

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

van Meeteren, A.

A. van Meeteren and C. J. Dunnewold, “Image quality of the human eye for eccentric entrance pupils,” Vis. Res. 23, 573–579 (1983).
[CrossRef]

Wald, G.

Wassenaar, P. A.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

Webb, R. H.

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

Wyszecki, G.

Ye, M.

Zadnik, K.

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalm. Physiol. Opt. 28, 441–447 (2008).
[CrossRef]

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).

Zhang, X.

Zhang, X. X.

X. X. Zhang, L. N. Thibos, and A. Bradley, “Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vis. Sci. 68, 456–458 (1991).

Albrecht v. Graefes Arch. Ophthalmol. (1)

H. Littmann, “Grundlegende Betrachtungen zur Ophthalmometrie,” Albrecht v. Graefes Arch. Ophthalmol. 151, 249–274 (1951).

Appl. Opt. (1)

Investig. Ophthalmol. Vis. Sci. (6)

F. Schaeffel, “Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes,” Investig. Ophthalmol. Vis. Sci. 49, 2216–2222 (2008).
[CrossRef]

K. Richdale, L. T. Sinnott, M. A. Bullimore, P. A. Wassenaar, P. Schmalbrock, C. Y. Kao, S. Patz, D. O. Mutti, A. Glasser, and K. Zadnik, “Quantification of age-related and per diopter accommodative changes of the lens and ciliary muscle in the emmetropic human eye,” Investig. Ophthalmol. Vis. Sci. 54, 1095–1105 (2013).
[CrossRef]

J. J. Rozema, D. A. Atchison, S. Kasthurirangan, J. M. Pope, and M. J. Tassignon, “Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo,” Investig. Ophthalmol. Vis. Sci. 53, 2533–2540 (2012).

L. A. Jones, G. L. Mitchell, D. O. Mutti, J. R. Hayes, M. L. Moeschberger, and K. Zadnik, “Comparison of ocular component growth curves among refractive error groups in children,” Investig. Ophthalmol. Vis. Sci. 46, 2317–2327 (2005).

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Munoz, J. Gronlund-Jacob, and J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Investig. Ophthalmol. Vis. Sci. 40, 1162–1169 (1999).

S. Kasthurirangan, E. L. Markwell, D. A. Atchison, and J. M. Pope, “In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation,” Investig. Ophthalmol. Vis. Sci. 49, 2531–2540 (2008).
[CrossRef]

J. Mod. Opt. (1)

A. de Castro, D. Siedlecki, D. Borja, S. Uhlhorn, J.-M. Parel, F. Manns, and S. Marcos, “Age-dependent variation of the gradient index profile in human crystalline lenses,” J. Mod. Opt. 58, 1781–1787 (2011).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (10)

X. Zhang, A. Bradley, and L. N. Thibos, “Experimental determination of the chromatic difference of magnification of the human eye and the location of the anterior nodal point,” J. Opt. Soc. Am. A 10, 213–220 (1993).
[CrossRef]

H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
[CrossRef]

L. N. Thibos, “Calculation of the influence of lateral chromatic aberration on image quality across the visual field,” J. Opt. Soc. Am. A 4, 1673–1680 (1987).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wave-front aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A 15, 2449–2456 (1998).
[CrossRef]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
[CrossRef]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A 12, 2348–2357 (1995).
[CrossRef]

Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987).
[CrossRef]

B. Jaeken, L. Lundstrom, and P. Artal, “Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration,” J. Opt. Soc. Am. A 28, 1871–1879 (2011).
[CrossRef]

R. Navarro, F. Palos, and L. Gonzalez, “Adaptive model of the gradient index of the human lens. I. formulation and model of aging ex vivo lenses,” J. Opt. Soc. Am. A 24, 2175–2185 (2007).
[CrossRef]

F. Schaeffel and H. C. Howland, “Mathematical model of emmetropization in the chicken,” J. Opt. Soc. Am. A 5, 2080–2086 (1988).
[CrossRef]

Ophthalm. Physiol. Opt. (1)

K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalm. Physiol. Opt. 28, 441–447 (2008).
[CrossRef]

Optom. Vis. Sci. (2)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78, 411–416 (2001).
[CrossRef]

X. X. Zhang, L. N. Thibos, and A. Bradley, “Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye,” Optom. Vis. Sci. 68, 456–458 (1991).

Philos. Trans. R. Soc. Lond. (1)

H. Hartridge, “The visual perception of fine detail,” Philos. Trans. R. Soc. Lond. 232, 519–671 (1947).

Science (1)

B. Howland and H. C. Howland, “Subjective measurement of high-order aberrations of the eye,” Science 193, 580–582 (1976).
[CrossRef]

Vis. Res. (7)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vis. Res. 39, 4309–4323 (1999).
[CrossRef]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vis. Res. 41, 3861–3871 (2001).
[CrossRef]

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vis. Res. 30, 187–206 (1990).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vis. Res. 30, 33–49 (1990).
[CrossRef]

A. van Meeteren and C. J. Dunnewold, “Image quality of the human eye for eccentric entrance pupils,” Vis. Res. 23, 573–579 (1983).
[CrossRef]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

B. A. Moffat, D. A. Atchison, and J. M. Pope, “Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro,” Vis. Res. 42, 1683–1693 (2002).
[CrossRef]

Other (2)

A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics, 2nd ed. (Butterworths, 1984).

A. Ivanoff, Les aberrations de l’œil (Éditions de la Revue d’optique théorique et instrumentale, 1953).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Blue and red open squares, presented on a black background. For most subjects, the blue square appeared smaller than the red, despite that they had the same size.

Fig. 2.
Fig. 2.

Stimulus to minimize the perceived brightness differences between red and blue and to quantify perceived differences in size of the filled red and blue squares. The filled squares were presented on top of each other in an alternating fashion, being replaced at 2 Hz. The black cross in the center provides a fixation point. Both brightness and size could be adjusted by the subjects until luminance flicker was minimized and until the perceived sizes were matched.

Fig. 3.
Fig. 3.

Psychometric function showing the percentage of correct responses of 11 subjects judging the size differences between two gray squares. Data are from 11 subjects, but fewer data points may be visible because they may be superimposed.

Fig. 4.
Fig. 4.

Perceived differences in the size of the red and blue squares, measured in percent, when the red square was brighter (abscissa; red pixel value 255, blue 200) or the blue square was brighter (ordinate; red 200, blue 255). The perceived differences in size were highly correlated. Data points represent the means and their SDs from four repetitions.

Fig. 5.
Fig. 5.

Correlations of the magnification differences in the red and the blue as measured in experiments 2 and 3.

Fig. 6.
Fig. 6.

Correlations of CDM with optical and biometrical data in the eye. A, Crystalline lens thickness. Filled diamonds (subject 1) and filled triangles (subject 2) denote the two subjects with similar axial lengths whose CDM was later simulated with the Liou–Brennan eye model (see Section 4). B, Vertical lens tilt. C, Vertical lens decentration. D, Age. Error bars denote SD.

Fig. 7.
Fig. 7.

Effects of spectacle corrections on the perceived magnification difference of the red and the blue squares. A, All subjects; B, only subjects wearing spectacles (filled circles) or contact lenses (filled triangles). Spectacle lens power was not an important factor to determine CDM. Data are from right eyes.

Tables (2)

Tables Icon

Table 1. Biometric and Optical Data of the Right Eyes of the Subjects

Tables Icon

Table 2. Kappa, Lens Tilt, and Decentration in 15 Young Subjectsa

Metrics