Abstract

Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Schmitt, A. Knüttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
    [CrossRef]
  2. X. Gan, S. P. Schilders, and M. Gu, “Image enhancement through turbid media under a microscope by use of polarization gating methods,” J. Opt. Soc. Am. A 16, 2177–2184 (1999).
    [CrossRef]
  3. M. A. Duguay and A. T. Mattick, “Ultrahigh speed photography of picosecond light pulses and echoes,” Appl. Opt. 10, 2162–2170 (1971).
    [CrossRef]
  4. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef]
  5. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16, 21492–21504 (2008).
    [CrossRef]
  6. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  7. M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
    [CrossRef]
  8. E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966).
    [CrossRef]
  9. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
    [CrossRef]
  10. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
    [CrossRef]
  11. Y. Chen, “Characterization of the image resolution for the first-arriving-light method,” Appl. Opt. 33, 2544–2552 (1994).
    [CrossRef]
  12. K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
    [CrossRef]
  13. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, and G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [CrossRef]
  14. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef]
  15. E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
    [CrossRef]
  16. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  17. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  18. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
    [CrossRef]
  19. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
    [CrossRef]
  20. B. Redding, G. Allen, E. R. Dufresne, and H. Cao, “Low-loss high-speed speckle reduction using a colloidal dispersion,” Appl. Opt. 52, 1168–1172 (2013).
    [CrossRef]
  21. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).
    [CrossRef]
  22. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
    [CrossRef]

2013 (1)

2012 (2)

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

2008 (1)

2006 (1)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

2000 (1)

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

1999 (2)

1995 (1)

1994 (3)

1992 (1)

1991 (4)

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[CrossRef]

E. Leith, H. Chen, Y. Chen, D. Dilworth, J. Lopez, R. Masri, J. Rudd, and J. Valdmanis, “Electronic holography and speckle methods for imaging through tissue using femtosecond gated pulses,” Appl. Opt. 30, 4204–4210 (1991).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

1989 (1)

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

1971 (1)

1966 (2)

E. N. Leith and J. Upatnieks, “Holographic imagery through diffusing media,” J. Opt. Soc. Am. 56, 523 (1966).
[CrossRef]

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Abramson, N.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Alfano, R. R.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Allen, G.

Balduzzi, D.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

Bevilacqua, F.

Bianco, V.

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Callens, N.

Cao, H.

Carson, J. J.

Chapman, G. H.

Chen, C.

Chen, H.

Chen, K.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Chen, Y.

Cuche, E.

Dasari, R. R.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Depeursinge, C.

Dilworth, D.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Dubois, F.

Dufresne, E. R.

Duguay, M. A.

Feld, M. S.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Ferraro, P.

Ferraroa, P.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

Finizio, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

Galli, A.

Gallic, A.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

Gan, X.

Goodman, J. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Gu, M.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Ho, P. P.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Ichimura, T.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Jackson, D. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Jüptner, W.

Kaminska, B.

Knüttel, A.

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Lehmann, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

Leith, E.

Leith, E. N.

Liang, X.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Lopez, J.

Masri, R.

Mattick, A. T.

Memmolo, P.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

Paturzo, M.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

Perelman, L. T.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Puglisi, R.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37, 4212–4214 (2012).
[CrossRef]

Redding, B.

Rudd, J.

Schilders, S. P.

Schmitt, J. M.

Schnars, U.

Schockaert, C.

Serafin, J.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Spears, K. G.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Sun, P.-C.

Toida, M.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Upatnieks, J.

Valdmanis, J.

Vasefi, F.

Vossler, G.

Wang, L.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Wang, Q. Z.

Yadlowsky, M.

Yourassowsky, C.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Zhang, Q.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

Zhu, X.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, “Two-dimensional coherent detection imaging in multiple scattering media based on the directional resolution capability of the optical heterodyne method,” Appl. Phys. B 52, 391–394 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, and H. Bjelkhagen, “Chrono-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1221 (1989).
[CrossRef]

J. Biomed. Opt. (1)

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5, 144–154 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Lab Chip (1)

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Gallic, and P. Ferraroa, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography: principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (8724 KB)     
» Media 2: MOV (8577 KB)     
» Media 3: MOV (8149 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics