Abstract

Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Chakrabarti, D. Scharstein, and T. Zickler, “An empirical camera model for internet color vision,” in Proceedings of British Machine Vision Conference (2009), p. 51.1.
  2. K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
    [CrossRef]
  3. H. Farid, “That looks fake!” (2011), retrieved http://www.fourandsix.com/blog/2011/6/29/that-looks-fake.html .
  4. N. Levin, E. Ben-Dor, and A. Singer, “A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments,” Int. J. Remote Sens. 26, 5475–5492 (2005).
    [CrossRef]
  5. E. De La Barrera and W. K. Smith, Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel (Unam, 2009).
  6. B. D. McKay, “The use of digital photography in systematics,” Biol. J. Linn. Soc. 110, 1–13 (2013).
    [CrossRef]
  7. M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007).
    [CrossRef]
  8. A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, “Color accuracy of commercial digital cameras for use in dentistry,” Dent. Mater. 22, 553–559 (2006).
    [CrossRef]
  9. J. Åhlén, Colour Correction of Underwater Images Using Spectral Data (Uppsala University, 2005).
  10. D. Akkaynak, E. Chan, J. J. Allen, and R. T. Hanlon, “Using spectrometry and photography to study color underwater,” in OCEANS (IEEE, 2011), pp. 1–8.
  11. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data, and Formulae, 2nd illustrated ed. (Wiley, 2000).
  12. E. Reinhard, E. Khan, A. Akyüz, and G. Johnson, Color Imaging: Fundamentals and Applications (A K Peters, 2008).
  13. R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2010).
  14. R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
    [CrossRef]
  15. G. D. Finlayson and M. S. Drew, “White-point preserving color correction,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1997), pp. 258–261.
  16. S. E. Süsstrunk, J. M. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” in Photonics West 2001-Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 172–183.
  17. S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB (Wiley, 2004).
  18. A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
    [CrossRef]
  19. J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras (Taylor & Francis, 2005).
  20. C. Mauer and D. Wueller, “Measuring the spectral response with a set of interference filters,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2009), paper 72500S.
  21. G. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” in IS&T/SID Sixth Color Imaging Conference: Color Science, Systems and Applications (1998).
  22. G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterisation based on polynomial modelling,” Color Res. Appl. 26, 76–84 (2001).
    [CrossRef]
  23. K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
    [CrossRef]
  24. V. Cheung, S. Westland, C. Li, J. Hardeberg, and D. Connah, “Characterization of trichromatic color cameras by using a new multispectral imaging technique,” J. Opt. Soc. Am. A 22, 1231–1240 (2005).
    [CrossRef]
  25. J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral sensitivity functions for digital color cameras?” in IEEE Workshop on the Applications of Computer Vision (IEEE, 2013), pp. 168–179.
  26. S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).
  27. U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
    [CrossRef]
  28. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
    [CrossRef]
  29. M. R. Rosen and F. S. Frey, “RIT American museums survey on digital imaging for direct capture of artwork,” in Society for Imaging Science and Technology Archiving Conference (2005).
  30. F. S. Frey and S. P. Farnand, “Benchmarking art image interchange cycles,” Tech. Rep. (Rochester Institute of Technology, 2011).
  31. D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013).
    [CrossRef]
  32. U. Siebeck, N. Marshall, A. Klüter, and O. Hoegh-Guldberg, “Monitoring coral bleaching using a colour reference card,” Coral Reefs 25, 453–460 (2006).
    [CrossRef]
  33. G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009).
    [CrossRef]
  34. T. W. Pike, “Using digital cameras to investigate animal colouration: estimating sensor sensitivity functions,” Behav. Ecol. Sociobiol. 65, 849–858 (2011).
    [CrossRef]
  35. D. Stavenga, R. Smits, and B. Hoenders, “Simple exponential functions describing the absorbance bands of visual pigment spectra,” Vis. Res. 33, 1011–1017 (1993).
    [CrossRef]

2013 (2)

B. D. McKay, “The use of digital photography in systematics,” Biol. J. Linn. Soc. 110, 1–13 (2013).
[CrossRef]

D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013).
[CrossRef]

2012 (2)

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
[CrossRef]

2011 (1)

T. W. Pike, “Using digital cameras to investigate animal colouration: estimating sensor sensitivity functions,” Behav. Ecol. Sociobiol. 65, 849–858 (2011).
[CrossRef]

2010 (1)

S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).

2009 (1)

G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009).
[CrossRef]

2008 (1)

A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
[CrossRef]

2007 (1)

M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007).
[CrossRef]

2006 (2)

A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, “Color accuracy of commercial digital cameras for use in dentistry,” Dent. Mater. 22, 553–559 (2006).
[CrossRef]

U. Siebeck, N. Marshall, A. Klüter, and O. Hoegh-Guldberg, “Monitoring coral bleaching using a colour reference card,” Coral Reefs 25, 453–460 (2006).
[CrossRef]

2005 (2)

N. Levin, E. Ben-Dor, and A. Singer, “A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments,” Int. J. Remote Sens. 26, 5475–5492 (2005).
[CrossRef]

V. Cheung, S. Westland, C. Li, J. Hardeberg, and D. Connah, “Characterization of trichromatic color cameras by using a new multispectral imaging technique,” J. Opt. Soc. Am. A 22, 1231–1240 (2005).
[CrossRef]

2002 (2)

R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
[CrossRef]

2001 (2)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterisation based on polynomial modelling,” Color Res. Appl. 26, 76–84 (2001).
[CrossRef]

1993 (1)

D. Stavenga, R. Smits, and B. Hoenders, “Simple exponential functions describing the absorbance bands of visual pigment spectra,” Vis. Res. 33, 1011–1017 (1993).
[CrossRef]

Åhlén, J.

J. Åhlén, Colour Correction of Underwater Images Using Spectral Data (Uppsala University, 2005).

Akkaynak, D.

D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013).
[CrossRef]

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

D. Akkaynak, E. Chan, J. J. Allen, and R. T. Hanlon, “Using spectrometry and photography to study color underwater,” in OCEANS (IEEE, 2011), pp. 1–8.

Akyüz, A.

E. Reinhard, E. Khan, A. Akyüz, and G. Johnson, Color Imaging: Fundamentals and Applications (A K Peters, 2008).

Allen, J.

D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013).
[CrossRef]

Allen, J. J.

D. Akkaynak, E. Chan, J. J. Allen, and R. T. Hanlon, “Using spectrometry and photography to study color underwater,” in OCEANS (IEEE, 2011), pp. 1–8.

Alsam, A.

A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
[CrossRef]

Arnold, S. E.

S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).

Avci, O.

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

Barnard, K.

K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
[CrossRef]

Beer, S.

G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009).
[CrossRef]

Ben-Dor, E.

N. Levin, E. Ben-Dor, and A. Singer, “A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments,” Int. J. Remote Sens. 26, 5475–5492 (2005).
[CrossRef]

Bilbro, G. L.

R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

Blekhman, A.

G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009).
[CrossRef]

Brown, M. S.

K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
[CrossRef]

Canikyan, S.

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

Chakrabarti, A.

A. Chakrabarti, D. Scharstein, and T. Zickler, “An empirical camera model for internet color vision,” in Proceedings of British Machine Vision Conference (2009), p. 51.1.

Chan, E.

D. Akkaynak, E. Chan, J. J. Allen, and R. T. Hanlon, “Using spectrometry and photography to study color underwater,” in OCEANS (IEEE, 2011), pp. 1–8.

Cheung, V.

Chiao, C.-C.

D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013).
[CrossRef]

Chittka, L.

S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).

Connah, D.

Cui, G.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Cuthill, I. C.

M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007).
[CrossRef]

De La Barrera, E.

E. De La Barrera and W. K. Smith, Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel (Unam, 2009).

Demirci, U.

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

Drew, M. S.

G. D. Finlayson and M. S. Drew, “White-point preserving color correction,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1997), pp. 258–261.

Farnand, S. P.

F. S. Frey and S. P. Farnand, “Benchmarking art image interchange cycles,” Tech. Rep. (Rochester Institute of Technology, 2011).

Faruq, S.

S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).

Finlayson, G.

A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
[CrossRef]

G. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” in IS&T/SID Sixth Color Imaging Conference: Color Science, Systems and Applications (1998).

Finlayson, G. D.

G. D. Finlayson and M. S. Drew, “White-point preserving color correction,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1997), pp. 258–261.

S. E. Süsstrunk, J. M. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” in Photonics West 2001-Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 172–183.

Frey, F. S.

M. R. Rosen and F. S. Frey, “RIT American museums survey on digital imaging for direct capture of artwork,” in Society for Imaging Science and Technology Archiving Conference (2005).

F. S. Frey and S. P. Farnand, “Benchmarking art image interchange cycles,” Tech. Rep. (Rochester Institute of Technology, 2011).

Funt, B.

K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
[CrossRef]

Gu, J.

J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral sensitivity functions for digital color cameras?” in IEEE Workshop on the Applications of Computer Vision (IEEE, 2013), pp. 168–179.

Gurkan, U. A.

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

Hai Ting, L.

K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
[CrossRef]

Hanlon, R.

D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013).
[CrossRef]

Hanlon, R. T.

D. Akkaynak, E. Chan, J. J. Allen, and R. T. Hanlon, “Using spectrometry and photography to study color underwater,” in OCEANS (IEEE, 2011), pp. 1–8.

Hardeberg, J.

Hoegh-Guldberg, O.

U. Siebeck, N. Marshall, A. Klüter, and O. Hoegh-Guldberg, “Monitoring coral bleaching using a colour reference card,” Coral Reefs 25, 453–460 (2006).
[CrossRef]

Hoenders, B.

D. Stavenga, R. Smits, and B. Hoenders, “Simple exponential functions describing the absorbance bands of visual pigment spectra,” Vis. Res. 33, 1011–1017 (1993).
[CrossRef]

Holm, J. M.

S. E. Süsstrunk, J. M. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” in Photonics West 2001-Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 172–183.

Holzman, R.

G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009).
[CrossRef]

Hong, G.

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterisation based on polynomial modelling,” Color Res. Appl. 26, 76–84 (2001).
[CrossRef]

Hordley, S.

G. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” in IS&T/SID Sixth Color Imaging Conference: Color Science, Systems and Applications (1998).

Hubel, P. M.

G. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” in IS&T/SID Sixth Color Imaging Conference: Color Science, Systems and Applications (1998).

Jiang, J.

J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral sensitivity functions for digital color cameras?” in IEEE Workshop on the Applications of Computer Vision (IEEE, 2013), pp. 168–179.

Johnson, G.

E. Reinhard, E. Khan, A. Akyüz, and G. Johnson, Color Imaging: Fundamentals and Applications (A K Peters, 2008).

Johnston, W. M.

A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, “Color accuracy of commercial digital cameras for use in dentistry,” Dent. Mater. 22, 553–559 (2006).
[CrossRef]

Khan, E.

E. Reinhard, E. Khan, A. Akyüz, and G. Johnson, Color Imaging: Fundamentals and Applications (A K Peters, 2008).

Klüter, A.

U. Siebeck, N. Marshall, A. Klüter, and O. Hoegh-Guldberg, “Monitoring coral bleaching using a colour reference card,” Coral Reefs 25, 453–460 (2006).
[CrossRef]

Kuo, S.

A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, “Color accuracy of commercial digital cameras for use in dentistry,” Dent. Mater. 22, 553–559 (2006).
[CrossRef]

Levin, N.

N. Levin, E. Ben-Dor, and A. Singer, “A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments,” Int. J. Remote Sens. 26, 5475–5492 (2005).
[CrossRef]

Li, C.

Lin, S.

K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
[CrossRef]

Lindsey, D. T.

A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, “Color accuracy of commercial digital cameras for use in dentistry,” Dent. Mater. 22, 553–559 (2006).
[CrossRef]

Liu, D.

J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral sensitivity functions for digital color cameras?” in IEEE Workshop on the Applications of Computer Vision (IEEE, 2013), pp. 168–179.

Loya, Y.

G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009).
[CrossRef]

Luo, M. R.

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterisation based on polynomial modelling,” Color Res. Appl. 26, 76–84 (2001).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

MacCallum, N.

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

Marshall, N.

U. Siebeck, N. Marshall, A. Klüter, and O. Hoegh-Guldberg, “Monitoring coral bleaching using a colour reference card,” Coral Reefs 25, 453–460 (2006).
[CrossRef]

Mäthger, L.

D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013).
[CrossRef]

Mauer, C.

C. Mauer and D. Wueller, “Measuring the spectral response with a set of interference filters,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2009), paper 72500S.

McKay, B. D.

B. D. McKay, “The use of digital photography in systematics,” Biol. J. Linn. Soc. 110, 1–13 (2013).
[CrossRef]

McOwan, P. W.

S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).

Nakamura, J.

J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras (Taylor & Francis, 2005).

Parraga, C. A.

M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007).
[CrossRef]

Partridge, J. C.

M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007).
[CrossRef]

Pike, T. W.

T. W. Pike, “Using digital cameras to investigate animal colouration: estimating sensor sensitivity functions,” Behav. Ecol. Sociobiol. 65, 849–858 (2011).
[CrossRef]

Ramanath, R.

R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

Reinhard, E.

E. Reinhard, E. Khan, A. Akyüz, and G. Johnson, Color Imaging: Fundamentals and Applications (A K Peters, 2008).

Rhodes, P. A.

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterisation based on polynomial modelling,” Color Res. Appl. 26, 76–84 (2001).
[CrossRef]

Rigg, B.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Ripamonti, C.

S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB (Wiley, 2004).

Rosen, M. R.

M. R. Rosen and F. S. Frey, “RIT American museums survey on digital imaging for direct capture of artwork,” in Society for Imaging Science and Technology Archiving Conference (2005).

Sander, W. A.

R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

Savolainen, V.

S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).

Scharstein, D.

A. Chakrabarti, D. Scharstein, and T. Zickler, “An empirical camera model for internet color vision,” in Proceedings of British Machine Vision Conference (2009), p. 51.1.

Seon Joo, K.

K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
[CrossRef]

Siebeck, U.

U. Siebeck, N. Marshall, A. Klüter, and O. Hoegh-Guldberg, “Monitoring coral bleaching using a colour reference card,” Coral Reefs 25, 453–460 (2006).
[CrossRef]

Singer, A.

N. Levin, E. Ben-Dor, and A. Singer, “A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments,” Int. J. Remote Sens. 26, 5475–5492 (2005).
[CrossRef]

Smith, W. K.

E. De La Barrera and W. K. Smith, Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel (Unam, 2009).

Smits, R.

D. Stavenga, R. Smits, and B. Hoenders, “Simple exponential functions describing the absorbance bands of visual pigment spectra,” Vis. Res. 33, 1011–1017 (1993).
[CrossRef]

Snyder, W. E.

R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

Stavenga, D.

D. Stavenga, R. Smits, and B. Hoenders, “Simple exponential functions describing the absorbance bands of visual pigment spectra,” Vis. Res. 33, 1011–1017 (1993).
[CrossRef]

Stevens, M.

M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007).
[CrossRef]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data, and Formulae, 2nd illustrated ed. (Wiley, 2000).

Su¨sstrunk, S.

K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
[CrossRef]

Süsstrunk, S.

J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral sensitivity functions for digital color cameras?” in IEEE Workshop on the Applications of Computer Vision (IEEE, 2013), pp. 168–179.

Süsstrunk, S. E.

S. E. Süsstrunk, J. M. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” in Photonics West 2001-Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 172–183.

Szeliski, R.

R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2010).

Tasoglu, S.

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

Troscianko, T. S.

M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007).
[CrossRef]

Unluisler, S.

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

Wee, A. G.

A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, “Color accuracy of commercial digital cameras for use in dentistry,” Dent. Mater. 22, 553–559 (2006).
[CrossRef]

Westland, S.

Winters, G.

G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009).
[CrossRef]

Wueller, D.

C. Mauer and D. Wueller, “Measuring the spectral response with a set of interference filters,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2009), paper 72500S.

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data, and Formulae, 2nd illustrated ed. (Wiley, 2000).

Zheng, L.

K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
[CrossRef]

Zickler, T.

A. Chakrabarti, D. Scharstein, and T. Zickler, “An empirical camera model for internet color vision,” in Proceedings of British Machine Vision Conference (2009), p. 51.1.

Adv. Healthcare Mat. (1)

U. A. Gurkan, S. Tasoglu, D. Akkaynak, O. Avci, S. Unluisler, S. Canikyan, N. MacCallum, and U. Demirci, “Smart interface materials integrated with microfluidics for on-demand local capture and release of cells,” Adv. Healthcare Mat. 1, 661–668 (2012).
[CrossRef]

Behav. Ecol. Sociobiol. (1)

T. W. Pike, “Using digital cameras to investigate animal colouration: estimating sensor sensitivity functions,” Behav. Ecol. Sociobiol. 65, 849–858 (2011).
[CrossRef]

Biol. J. Linn. Soc. (2)

B. D. McKay, “The use of digital photography in systematics,” Biol. J. Linn. Soc. 110, 1–13 (2013).
[CrossRef]

M. Stevens, C. A. Parraga, I. C. Cuthill, J. C. Partridge, and T. S. Troscianko, “Using digital photography to study animal coloration,” Biol. J. Linn. Soc. 90, 211–237 (2007).
[CrossRef]

Color Res. Appl. (4)

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

A. Alsam and G. Finlayson, “Integer programming for optimal reduction of calibration targets,” Color Res. Appl. 33, 212–220 (2008).
[CrossRef]

G. Hong, M. R. Luo, and P. A. Rhodes, “A study of digital camera colorimetric characterisation based on polynomial modelling,” Color Res. Appl. 26, 76–84 (2001).
[CrossRef]

K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
[CrossRef]

Coral Reefs (1)

U. Siebeck, N. Marshall, A. Klüter, and O. Hoegh-Guldberg, “Monitoring coral bleaching using a colour reference card,” Coral Reefs 25, 453–460 (2006).
[CrossRef]

Dent. Mater. (1)

A. G. Wee, D. T. Lindsey, S. Kuo, and W. M. Johnston, “Color accuracy of commercial digital cameras for use in dentistry,” Dent. Mater. 22, 553–559 (2006).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

K. Seon Joo, L. Hai Ting, L. Zheng, S. Süsstrunk, S. Lin, and M. S. Brown, “A new in-camera imaging model for color computer vision and its application,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2289–2302 (2012).
[CrossRef]

Int. J. Remote Sens. (1)

N. Levin, E. Ben-Dor, and A. Singer, “A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments,” Int. J. Remote Sens. 26, 5475–5492 (2005).
[CrossRef]

J. Comp. Physiol. A (1)

D. Akkaynak, J. Allen, L. Mäthger, C.-C. Chiao, and R. Hanlon, “Quantification of cuttlefish (Sepia officinalis) camouflage: a study of color and luminance using in situ spectrometry,” J. Comp. Physiol. A 199, 211–225 (2013).
[CrossRef]

J. Electron. Imaging (1)

R. Ramanath, W. E. Snyder, G. L. Bilbro, and W. A. Sander, “Demosaicking methods for Bayer color arrays,” J. Electron. Imaging 11, 306–315 (2002).
[CrossRef]

J. Exp. Mar. Biol. Ecol. (1)

G. Winters, R. Holzman, A. Blekhman, S. Beer, and Y. Loya, “Photographic assessment of coral chlorophyll contents: implications for ecophysiological studies and coral monitoring,” J. Exp. Mar. Biol. Ecol. 380, 25–35 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

PloS one (1)

S. E. Arnold, S. Faruq, V. Savolainen, P. W. McOwan, and L. Chittka, “FReD: the floral reflectance database, A web portal for analyses of flower colour,” PloS one 5, e14287 (2010).

Vis. Res. (1)

D. Stavenga, R. Smits, and B. Hoenders, “Simple exponential functions describing the absorbance bands of visual pigment spectra,” Vis. Res. 33, 1011–1017 (1993).
[CrossRef]

Other (17)

M. R. Rosen and F. S. Frey, “RIT American museums survey on digital imaging for direct capture of artwork,” in Society for Imaging Science and Technology Archiving Conference (2005).

F. S. Frey and S. P. Farnand, “Benchmarking art image interchange cycles,” Tech. Rep. (Rochester Institute of Technology, 2011).

A. Chakrabarti, D. Scharstein, and T. Zickler, “An empirical camera model for internet color vision,” in Proceedings of British Machine Vision Conference (2009), p. 51.1.

J. Jiang, D. Liu, J. Gu, and S. Süsstrunk, “What is the space of spectral sensitivity functions for digital color cameras?” in IEEE Workshop on the Applications of Computer Vision (IEEE, 2013), pp. 168–179.

J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras (Taylor & Francis, 2005).

C. Mauer and D. Wueller, “Measuring the spectral response with a set of interference filters,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2009), paper 72500S.

G. Finlayson, S. Hordley, and P. M. Hubel, “Recovering device sensitivities with quadratic programming,” in IS&T/SID Sixth Color Imaging Conference: Color Science, Systems and Applications (1998).

G. D. Finlayson and M. S. Drew, “White-point preserving color correction,” in Color and Imaging Conference (Society for Imaging Science and Technology, 1997), pp. 258–261.

S. E. Süsstrunk, J. M. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” in Photonics West 2001-Electronic Imaging (International Society for Optics and Photonics, 2000), pp. 172–183.

S. Westland and C. Ripamonti, Computational Colour Science Using MATLAB (Wiley, 2004).

E. De La Barrera and W. K. Smith, Perspectives in Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel (Unam, 2009).

H. Farid, “That looks fake!” (2011), retrieved http://www.fourandsix.com/blog/2011/6/29/that-looks-fake.html .

J. Åhlén, Colour Correction of Underwater Images Using Spectral Data (Uppsala University, 2005).

D. Akkaynak, E. Chan, J. J. Allen, and R. T. Hanlon, “Using spectrometry and photography to study color underwater,” in OCEANS (IEEE, 2011), pp. 1–8.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data, and Formulae, 2nd illustrated ed. (Wiley, 2000).

E. Reinhard, E. Khan, A. Akyüz, and G. Johnson, Color Imaging: Fundamentals and Applications (A K Peters, 2008).

R. Szeliski, Computer Vision: Algorithms and Applications (Springer, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Basic image-processing pipeline in a consumer camera.

Fig. 2.
Fig. 2.

(a) An uncompressed image. (b) Artifacts after jpg compression: (1) grid-like pattern along block boundaries, (2) blurring due to quantization, (3) color artifacts, (4) jagged object boundaries. Photo credit: Dr. Hany Farid. Used with permission. See [3] for full resolution images.

Fig. 3.
Fig. 3.

Workflow proposed for processing raw images. Consumer cameras can be used for scientific data acquisition if images are captured in raw format and processed manually so that they maintain a linear relationship to scene radiance.

Fig. 4.
Fig. 4.

Human color-matching functions for the CIE XYZ color space for 2° observer and spectral sensitivities of two cameras; Canon EOS 1Ds mk II and Nikon D70.

Fig. 5.
Fig. 5.

(a) Irradiance of daylight at noon (CIE D65 illuminant) and noon daylight on a sunny day recorded at 3 m depth in the Aegean Sea. (b) Reflectance spectra of blue, orange, and red patches from a Macbeth ColorChecker (MCC). Reflectance is the ratio of reflected light to incoming light at each wavelength, and it is a physical property of a surface, unaffected by the ambient light field, unlike radiance. (c) Radiance of the same patches under noon daylight on land and (d) underwater.

Fig. 6.
Fig. 6.

(a) An original scene. Inset at lower left: Bayer mosaic. (b) Close-ups of marked areas after high-quality (adaptive) and (c) low-quality (non-adaptive) demosaicing. Artifacts shown here are zippering on the sides of the ear and false colors near the white pixels of the whiskers and the eye.

Fig. 7.
Fig. 7.

(a) Examples of photographic calibration targets. Top to bottom: Sekonik Exposure Profile Target II, Digital Kolor Kard, Macbeth ColorChecker (MCC) Digital. (b) Reflectance spectra (400–700 nm) of Spectralon targets (black curves, prefixed with SRS-), gray patches of the MCC (purple), and a white sheet of printer paper (blue). Note that MCC 23 has a flatter spectrum than the white patch (MCC 19). The printer paper is bright and reflects most of the light, but it does not do so uniformly at each wavelength.

Fig. 8.
Fig. 8.

Chromaticity of MCC patches captured by two cameras, whose sensitivities are given in Fig. 4, in device-dependent and independent color spaces.

Fig. 9.
Fig. 9.

Using more patches for a color transformation does not guarantee increased transformation accuracy. In this example, color-transformation error is computed after 1–24 patches are used. There were many possible ways the patches could have been selected; only three are shown here. Regardless of patch ordering, overall color-transformation error is minimized after the inclusion of the 18th patch. The first six patches of orders 1 and 2 are chromatic, and for order 3, they are achromatic. The errors associated with order 3 are higher initially because the scene, which consists of a photo of an MCC, is mostly chromatic. Note that it is not possible to have the total error be identically zero even in this simple example due to numerical error and noise.

Fig. 10.
Fig. 10.

Features from three different dive sites that could be used for SSCC. This image first appeared in the December 2012 issue of Sea Technology magazine.

Fig. 11.
Fig. 11.

Scene-specific color transformation improves accuracy. (a) A “non-ordinary” scene that has no chromaticity overlap with the patches in the calibration target. (b) Mean error after SSCC is significantly less than after using a calibration chart. (c) An “ordinary” scene in which MCC patches span the chromaticities in the scene. (d) Resulting error between the MCC and scene-specific color transformation is comparable, but on average, still less for SSCC.

Fig. 12.
Fig. 12.

Temperature distribution along the microchip channel, which is locally heated to 39°C (colored region) while the rest was kept below 32°C (black region).

Fig. 13.
Fig. 13.

Example II: Use of inexpensive COTS cameras for accurate artwork photography. (a) Oil painting under daylight illumination. (b) Thirty-six points from which ground-truth spectra were measured. (b) Chromatic loci of the ground truth samples compared to MCC patches under identical illumination. (d) sRGB representation of the colors used for scene-specific calibration. Artwork: Fulya Akkaynak.

Fig. 14.
Fig. 14.

Example III Capturing photographs under monochromatic low-pressure sodium light. (a) A pair of fabrics under broadband light. (b) A jpg image taken with the auto settings of a camera, under monochromatic sodium light. (c) Image processed using SSCC according to the flow in Fig. 3.

Fig. 15.
Fig. 15.

Example IV: In situ capture of (a) an underwater habitat and (b) a camouflaged cuttlefish (marked with white arrow) using SSCC with features similar to those shown in Fig. 10 for Urla, Turkey. (c) and (d) are jpg outputs directly from the camera operated in auto mode and have a visible red tint as a consequence of in-camera processing.

Fig. 16.
Fig. 16.

Example V: Consistent underwater color correction. (a) In each frame, the color chart on the left was used for calibration, and the one on the right was for testing. Images were taken in Toyota Reef, Fiji. (b) Average error for several color-corrected methods for training and testing. Our method achieves the lowest error and is the only method to improve over the raw images of the test chart.

Tables (2)

Tables Icon

Table 1. Basic Properties of Color Imaging Devices

Tables Icon

Table 2. Summary of Post-Processing Steps for Raw Images in Examples Given in Section 4

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ic=k(γ)cosθiλminλmaxSc(λ)Li(λ)F(λ,θ)dλ.
Lr(λ)=Li(λ)F(λ,θ)cosθi,
VdestinationXYZ=[MA]1[ρDρS000γDγS000βDβS][MA]VsourceXYZ,
[ργβ]i=[MA][WP]iXYZi=S,D.
piWB=piDSiWSiDSii=RGB,
Vground truthXYZ=TVlinearRGB.
T=Vground truthXYZ[VlinearRGB]+,
IcorrectedXYZ=TIlinearRGB
e=1Ni=1N(LiLGT)2+(AiAGT)2+(BiBGT)2,
Xj=1Kinx¯j,iRiEi,
r¯m=1Nn=1Nrm,n,g¯m=1Nn=1Ngm,n,m=1M,

Metrics