E. J. Leavline and D. A. A. G. Singh, “Enhanced modified decision based unsymmetric trimmed median filter for salt and pepper noise removal,” Int. J. Imaging Robot. 11, 46–56 (2013).

S. Sutha, E. J. Leavline, and D. A. A. G. Singh, “A comprehensive study on wavelet based shrinkage methods for denoising natural images,” WSEAS Trans. Signal Process. 9, 203–215 (2013).

S. Sutha, E. J. Leavline, and D. A. A. Gnana Sing, “IHNS: a pragmatic investigation on identifying highly noisy subband in FMDFB for fixing threshold to deteriorate noise in images,” Inf. Technol. J. 12, 1289–1298 (2013).

L. Shang, P. Su, and T. Liu, “Denoising MMW image using the combination method of contourlet and KSC shrinkage,” Neurocomputing 83, 229–233 (2012).

[CrossRef]

G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto, and A. M. L. Lanzolla, “Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images,” Measurement 45, 1792–1800 (2012).

[CrossRef]

E. Bae, J. Shi, and X.-C. Tai, “Graph cuts for curvature based image denoising,” IEEE Trans. Image Process. 20, 1199–1210 (2011).

[CrossRef]

A. M. Atto, D. Pastor, and G. Mercier, “Wavelet shrinkage: unification of basic thresholding functions and thresholds,” Signal Image Video Process. 5, 11–28 (2011).

E. J. Leavline, S. Sutha, and D. A. A. G. Singh, “Wavelet domain shrinkage methods for noise removal in images. A compendium,” Int. J. Comput. Appl. Technol. 33, 28–32 (2011).

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment,” IEEE Trans. Image Process. 20, 2378–2386 (2011).

[CrossRef]

H. X. Huang, J. Gong, and T. Zhang, “Method of adaptive wavelet thresholding used in image denoising,” Adv. Mater. Res 204, 1184–1187 (2011).

[CrossRef]

G. G. Bhutada, R. S. Anand, and S. C. Saxena, “Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform,” Digital Signal Process. 21, 118–130 (2011).

[CrossRef]

M. Forouzanfar, H. A. Moghaddam, and M. Gity, “A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images,” Signal Image Video Process. 4, 359–375 (2010).

A. N. Akansu, W. A. Serdijn, and I. W. Selesnick, “Emerging applications of wavelets: a review,” Phys. Chem. Commun. 3, 1–18 (2010).

[CrossRef]

D. Cho, T. D. Bui, and G. Chen, “Image denoising based on wavelet shrinkage using neighbor and level dependency,” Int. J. Wavelets Multires. Inf. Process. 7, 299–311 (2009).

H. Yu, L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain,” IEEE Trans. Image Process. 18, 2364–2369 (2009).

[CrossRef]

M. Nasri and H. Nezamabadi-pour, “Image denoising in the wavelet domain using a new adaptive thresholding function,” Neurocomputing 72, 1012–1025 (2009).

[CrossRef]

L. Zhang, R. Lukac, X. Wu, and D. Zhang, “PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras,” IEEE Trans. Image Process. 18, 797–812 (2009).

[CrossRef]

S. Mallat and G. Peyré, “A review of bandlet methods for geometrical image representation,” Numer. Algorithms 44, 205–234 (2007).

[CrossRef]

K. Guo and D. Labate, “Optimally sparse multidimensional representation using shearlets,” SIAM J. Math. Anal. 39, 298–318 (2007).

[CrossRef]

G. Y. Chen and B. Kégl, “Image denoising with complex ridgelets,” Pattern Recogn. 40, 578–585 (2007).

[CrossRef]

Z.-F. Zhou and P.-L. Shui, “Contourlet-based image denoising algorithm using directional windows,” Electron. Lett. 43, 92–93 (2007).

[CrossRef]

S. Sudha, G. R. Suresh, and R. Sukanesh, “Wavelet based image denoising using adaptive subband thresholding,” IJSC 2, 628–632 (2007).

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “Multiscale directional filter bank with applications to structured and random texture retrieval,” Pattern Recogn. 40, 1182–1194 (2007).

[CrossRef]

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “A novel fast and reduced redundancy structure for multiscale directional filter banks,” IEEE Trans. Image Process. 16, 2058–2068 (2007).

[CrossRef]

V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, “Directionlets: anisotropic multidirectional representation with separable filtering,” IEEE Trans. Image Process. 15, 1916–1933 (2006).

[CrossRef]

M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14, 2091–2106 (2005).

[CrossRef]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[CrossRef]

M. N. Do and M. Vetterli, “Framing pyramids,” IEEE Trans. Signal Process. 51, 2329–2342 (2003).

[CrossRef]

J.-L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Trans. Image Process. 11, 670–684 (2002).

[CrossRef]

F. G. Meyer and R. R. Coifman, “Brushlets: a tool for directional image analysis and image compression,” Appl. Comput. Harmon. Anal. 4, 147–187 (1997).

[CrossRef]

T. S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 959–971 (1996).

[CrossRef]

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).

[CrossRef]

R. H. Bamberger and M. J. Smith, “A filter bank for the directional decomposition of images: theory and design,” IEEE Trans. Signal Process. 40, 882–893 (1992).

[CrossRef]

P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).

[CrossRef]

P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).

[CrossRef]

A. N. Akansu, W. A. Serdijn, and I. W. Selesnick, “Emerging applications of wavelets: a review,” Phys. Chem. Commun. 3, 1–18 (2010).

[CrossRef]

G. G. Bhutada, R. S. Anand, and S. C. Saxena, “Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform,” Digital Signal Process. 21, 118–130 (2011).

[CrossRef]

G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto, and A. M. L. Lanzolla, “Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images,” Measurement 45, 1792–1800 (2012).

[CrossRef]

G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto, and A. M. L. Lanzolla, “Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images,” Measurement 45, 1792–1800 (2012).

[CrossRef]

A. M. Atto, D. Pastor, and G. Mercier, “Wavelet shrinkage: unification of basic thresholding functions and thresholds,” Signal Image Video Process. 5, 11–28 (2011).

E. Bae, J. Shi, and X.-C. Tai, “Graph cuts for curvature based image denoising,” IEEE Trans. Image Process. 20, 1199–1210 (2011).

[CrossRef]

R. H. Bamberger and M. J. Smith, “A filter bank for the directional decomposition of images: theory and design,” IEEE Trans. Signal Process. 40, 882–893 (1992).

[CrossRef]

V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, “Directionlets: anisotropic multidirectional representation with separable filtering,” IEEE Trans. Image Process. 15, 1916–1933 (2006).

[CrossRef]

G. G. Bhutada, R. S. Anand, and S. C. Saxena, “Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform,” Digital Signal Process. 21, 118–130 (2011).

[CrossRef]

L. Gang, L. Xutao, L. Xiaogeng, and F. Bo, “An adaptive denoising and enhancing algorithm based on the MAP rule in the contourlet domain for infrared image,” in International Conference on Computational Intelligence and Software Engineering (CiSE, 2009), pp. 1–5.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[CrossRef]

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers (IEEE, 2003), Vol. 2, pp. 1398–1402.

D. Cho, T. D. Bui, and G. Chen, “Image denoising based on wavelet shrinkage using neighbor and level dependency,” Int. J. Wavelets Multires. Inf. Process. 7, 299–311 (2009).

P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).

[CrossRef]

J.-L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Trans. Image Process. 11, 670–684 (2002).

[CrossRef]

G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto, and A. M. L. Lanzolla, “Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images,” Measurement 45, 1792–1800 (2012).

[CrossRef]

D. Cho, T. D. Bui, and G. Chen, “Image denoising based on wavelet shrinkage using neighbor and level dependency,” Int. J. Wavelets Multires. Inf. Process. 7, 299–311 (2009).

G. Y. Chen and B. Kégl, “Image denoising with complex ridgelets,” Pattern Recogn. 40, 578–585 (2007).

[CrossRef]

Z. Dan, X. Chen, H. Gan, and C. Gao, “Locally adaptive shearlet denoising based on bayesian MAP estimate,” in Sixth International Conference on Image and Graphics (ICIG, 2011), pp. 28–32.

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “Multiscale directional filter bank with applications to structured and random texture retrieval,” Pattern Recogn. 40, 1182–1194 (2007).

[CrossRef]

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “A novel fast and reduced redundancy structure for multiscale directional filter banks,” IEEE Trans. Image Process. 16, 2058–2068 (2007).

[CrossRef]

D. Cho, T. D. Bui, and G. Chen, “Image denoising based on wavelet shrinkage using neighbor and level dependency,” Int. J. Wavelets Multires. Inf. Process. 7, 299–311 (2009).

F. G. Meyer and R. R. Coifman, “Brushlets: a tool for directional image analysis and image compression,” Appl. Comput. Harmon. Anal. 4, 147–187 (1997).

[CrossRef]

Z. Dan, X. Chen, H. Gan, and C. Gao, “Locally adaptive shearlet denoising based on bayesian MAP estimate,” in Sixth International Conference on Image and Graphics (ICIG, 2011), pp. 28–32.

J. Yang, R. Feng, and W. Deng, “A new algorithm of image denoising based on stationary wavelet multi-scale adaptive threshold,” in 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT, 2011), Vol. 9, pp. 4550–4553.

M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14, 2091–2106 (2005).

[CrossRef]

M. N. Do and M. Vetterli, “Framing pyramids,” IEEE Trans. Signal Process. 51, 2329–2342 (2003).

[CrossRef]

M. N. Do, Directional Multiresolution Image Representations (Citeseer, 2001), Vol. 2500.

M. N. Do and M. Vetterli, “Pyramidal directional filter banks and curvelets,” in Proceedings of the 2001 International Conference on Image Processing (IEEE, 2001), Vol. 3, pp. 158–161.

J.-L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Trans. Image Process. 11, 670–684 (2002).

[CrossRef]

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).

[CrossRef]

V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, “Directionlets: anisotropic multidirectional representation with separable filtering,” IEEE Trans. Image Process. 15, 1916–1933 (2006).

[CrossRef]

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.

J. Yang, R. Feng, and W. Deng, “A new algorithm of image denoising based on stationary wavelet multi-scale adaptive threshold,” in 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT, 2011), Vol. 9, pp. 4550–4553.

M. Forouzanfar, H. A. Moghaddam, and M. Gity, “A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images,” Signal Image Video Process. 4, 359–375 (2010).

Z. Dan, X. Chen, H. Gan, and C. Gao, “Locally adaptive shearlet denoising based on bayesian MAP estimate,” in Sixth International Conference on Image and Graphics (ICIG, 2011), pp. 28–32.

L. Gang, L. Xutao, L. Xiaogeng, and F. Bo, “An adaptive denoising and enhancing algorithm based on the MAP rule in the contourlet domain for infrared image,” in International Conference on Computational Intelligence and Software Engineering (CiSE, 2009), pp. 1–5.

Z. Dan, X. Chen, H. Gan, and C. Gao, “Locally adaptive shearlet denoising based on bayesian MAP estimate,” in Sixth International Conference on Image and Graphics (ICIG, 2011), pp. 28–32.

G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto, and A. M. L. Lanzolla, “Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images,” Measurement 45, 1792–1800 (2012).

[CrossRef]

M. Forouzanfar, H. A. Moghaddam, and M. Gity, “A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images,” Signal Image Video Process. 4, 359–375 (2010).

S. Sutha, E. J. Leavline, and D. A. A. Gnana Sing, “IHNS: a pragmatic investigation on identifying highly noisy subband in FMDFB for fixing threshold to deteriorate noise in images,” Inf. Technol. J. 12, 1289–1298 (2013).

H. X. Huang, J. Gong, and T. Zhang, “Method of adaptive wavelet thresholding used in image denoising,” Adv. Mater. Res 204, 1184–1187 (2011).

[CrossRef]

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.

K. Guo and D. Labate, “Optimally sparse multidimensional representation using shearlets,” SIAM J. Math. Anal. 39, 298–318 (2007).

[CrossRef]

H. X. Huang, J. Gong, and T. Zhang, “Method of adaptive wavelet thresholding used in image denoising,” Adv. Mater. Res 204, 1184–1187 (2011).

[CrossRef]

G. Y. Chen and B. Kégl, “Image denoising with complex ridgelets,” Pattern Recogn. 40, 578–585 (2007).

[CrossRef]

K. Guo and D. Labate, “Optimally sparse multidimensional representation using shearlets,” SIAM J. Math. Anal. 39, 298–318 (2007).

[CrossRef]

G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto, and A. M. L. Lanzolla, “Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images,” Measurement 45, 1792–1800 (2012).

[CrossRef]

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “A novel fast and reduced redundancy structure for multiscale directional filter banks,” IEEE Trans. Image Process. 16, 2058–2068 (2007).

[CrossRef]

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “Multiscale directional filter bank with applications to structured and random texture retrieval,” Pattern Recogn. 40, 1182–1194 (2007).

[CrossRef]

S. Sutha, E. J. Leavline, and D. A. A. Gnana Sing, “IHNS: a pragmatic investigation on identifying highly noisy subband in FMDFB for fixing threshold to deteriorate noise in images,” Inf. Technol. J. 12, 1289–1298 (2013).

S. Sutha, E. J. Leavline, and D. A. A. G. Singh, “A comprehensive study on wavelet based shrinkage methods for denoising natural images,” WSEAS Trans. Signal Process. 9, 203–215 (2013).

E. J. Leavline and D. A. A. G. Singh, “Enhanced modified decision based unsymmetric trimmed median filter for salt and pepper noise removal,” Int. J. Imaging Robot. 11, 46–56 (2013).

E. J. Leavline, S. Sutha, and D. A. A. G. Singh, “Wavelet domain shrinkage methods for noise removal in images. A compendium,” Int. J. Comput. Appl. Technol. 33, 28–32 (2011).

T. S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 959–971 (1996).

[CrossRef]

L. Shang, P. Su, and T. Liu, “Denoising MMW image using the combination method of contourlet and KSC shrinkage,” Neurocomputing 83, 229–233 (2012).

[CrossRef]

L. Zhang, R. Lukac, X. Wu, and D. Zhang, “PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras,” IEEE Trans. Image Process. 18, 797–812 (2009).

[CrossRef]

S. Mallat and G. Peyré, “A review of bandlet methods for geometrical image representation,” Numer. Algorithms 44, 205–234 (2007).

[CrossRef]

A. M. Atto, D. Pastor, and G. Mercier, “Wavelet shrinkage: unification of basic thresholding functions and thresholds,” Signal Image Video Process. 5, 11–28 (2011).

F. G. Meyer and R. R. Coifman, “Brushlets: a tool for directional image analysis and image compression,” Appl. Comput. Harmon. Anal. 4, 147–187 (1997).

[CrossRef]

M. Forouzanfar, H. A. Moghaddam, and M. Gity, “A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images,” Signal Image Video Process. 4, 359–375 (2010).

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment,” IEEE Trans. Image Process. 20, 2378–2386 (2011).

[CrossRef]

M. Nasri and H. Nezamabadi-pour, “Image denoising in the wavelet domain using a new adaptive thresholding function,” Neurocomputing 72, 1012–1025 (2009).

[CrossRef]

M. Nasri and H. Nezamabadi-pour, “Image denoising in the wavelet domain using a new adaptive thresholding function,” Neurocomputing 72, 1012–1025 (2009).

[CrossRef]

A. M. Atto, D. Pastor, and G. Mercier, “Wavelet shrinkage: unification of basic thresholding functions and thresholds,” Signal Image Video Process. 5, 11–28 (2011).

S. Mallat and G. Peyré, “A review of bandlet methods for geometrical image representation,” Numer. Algorithms 44, 205–234 (2007).

[CrossRef]

G. G. Bhutada, R. S. Anand, and S. C. Saxena, “Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform,” Digital Signal Process. 21, 118–130 (2011).

[CrossRef]

A. N. Akansu, W. A. Serdijn, and I. W. Selesnick, “Emerging applications of wavelets: a review,” Phys. Chem. Commun. 3, 1–18 (2010).

[CrossRef]

A. N. Akansu, W. A. Serdijn, and I. W. Selesnick, “Emerging applications of wavelets: a review,” Phys. Chem. Commun. 3, 1–18 (2010).

[CrossRef]

L. Shang, P. Su, and T. Liu, “Denoising MMW image using the combination method of contourlet and KSC shrinkage,” Neurocomputing 83, 229–233 (2012).

[CrossRef]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[CrossRef]

E. Bae, J. Shi, and X.-C. Tai, “Graph cuts for curvature based image denoising,” IEEE Trans. Image Process. 20, 1199–1210 (2011).

[CrossRef]

Z.-F. Zhou and P.-L. Shui, “Contourlet-based image denoising algorithm using directional windows,” Electron. Lett. 43, 92–93 (2007).

[CrossRef]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[CrossRef]

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers (IEEE, 2003), Vol. 2, pp. 1398–1402.

E. J. Leavline and D. A. A. G. Singh, “Enhanced modified decision based unsymmetric trimmed median filter for salt and pepper noise removal,” Int. J. Imaging Robot. 11, 46–56 (2013).

S. Sutha, E. J. Leavline, and D. A. A. G. Singh, “A comprehensive study on wavelet based shrinkage methods for denoising natural images,” WSEAS Trans. Signal Process. 9, 203–215 (2013).

E. J. Leavline, S. Sutha, and D. A. A. G. Singh, “Wavelet domain shrinkage methods for noise removal in images. A compendium,” Int. J. Comput. Appl. Technol. 33, 28–32 (2011).

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “Multiscale directional filter bank with applications to structured and random texture retrieval,” Pattern Recogn. 40, 1182–1194 (2007).

[CrossRef]

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “A novel fast and reduced redundancy structure for multiscale directional filter banks,” IEEE Trans. Image Process. 16, 2058–2068 (2007).

[CrossRef]

R. H. Bamberger and M. J. Smith, “A filter bank for the directional decomposition of images: theory and design,” IEEE Trans. Signal Process. 40, 882–893 (1992).

[CrossRef]

J.-L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Trans. Image Process. 11, 670–684 (2002).

[CrossRef]

L. Shang, P. Su, and T. Liu, “Denoising MMW image using the combination method of contourlet and KSC shrinkage,” Neurocomputing 83, 229–233 (2012).

[CrossRef]

S. Sudha, G. R. Suresh, and R. Sukanesh, “Wavelet based image denoising using adaptive subband thresholding,” IJSC 2, 628–632 (2007).

S. Sudha, G. R. Suresh, and R. Sukanesh, “Wavelet based image denoising using adaptive subband thresholding,” IJSC 2, 628–632 (2007).

S. Sudha, G. R. Suresh, and R. Sukanesh, “Wavelet based image denoising using adaptive subband thresholding,” IJSC 2, 628–632 (2007).

S. Sutha, E. J. Leavline, and D. A. A. Gnana Sing, “IHNS: a pragmatic investigation on identifying highly noisy subband in FMDFB for fixing threshold to deteriorate noise in images,” Inf. Technol. J. 12, 1289–1298 (2013).

S. Sutha, E. J. Leavline, and D. A. A. G. Singh, “A comprehensive study on wavelet based shrinkage methods for denoising natural images,” WSEAS Trans. Signal Process. 9, 203–215 (2013).

E. J. Leavline, S. Sutha, and D. A. A. G. Singh, “Wavelet domain shrinkage methods for noise removal in images. A compendium,” Int. J. Comput. Appl. Technol. 33, 28–32 (2011).

E. Bae, J. Shi, and X.-C. Tai, “Graph cuts for curvature based image denoising,” IEEE Trans. Image Process. 20, 1199–1210 (2011).

[CrossRef]

V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, “Directionlets: anisotropic multidirectional representation with separable filtering,” IEEE Trans. Image Process. 15, 1916–1933 (2006).

[CrossRef]

V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, “Directionlets: anisotropic multidirectional representation with separable filtering,” IEEE Trans. Image Process. 15, 1916–1933 (2006).

[CrossRef]

M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14, 2091–2106 (2005).

[CrossRef]

M. N. Do and M. Vetterli, “Framing pyramids,” IEEE Trans. Signal Process. 51, 2329–2342 (2003).

[CrossRef]

M. N. Do and M. Vetterli, “Pyramidal directional filter banks and curvelets,” in Proceedings of the 2001 International Conference on Image Processing (IEEE, 2001), Vol. 3, pp. 158–161.

H. Yu, L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain,” IEEE Trans. Image Process. 18, 2364–2369 (2009).

[CrossRef]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[CrossRef]

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers (IEEE, 2003), Vol. 2, pp. 1398–1402.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.

L. Zhang, R. Lukac, X. Wu, and D. Zhang, “PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras,” IEEE Trans. Image Process. 18, 797–812 (2009).

[CrossRef]

L. Gang, L. Xutao, L. Xiaogeng, and F. Bo, “An adaptive denoising and enhancing algorithm based on the MAP rule in the contourlet domain for infrared image,” in International Conference on Computational Intelligence and Software Engineering (CiSE, 2009), pp. 1–5.

L. Gang, L. Xutao, L. Xiaogeng, and F. Bo, “An adaptive denoising and enhancing algorithm based on the MAP rule in the contourlet domain for infrared image,” in International Conference on Computational Intelligence and Software Engineering (CiSE, 2009), pp. 1–5.

J. Yang, R. Feng, and W. Deng, “A new algorithm of image denoising based on stationary wavelet multi-scale adaptive threshold,” in 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT, 2011), Vol. 9, pp. 4550–4553.

H. Yu, L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain,” IEEE Trans. Image Process. 18, 2364–2369 (2009).

[CrossRef]

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment,” IEEE Trans. Image Process. 20, 2378–2386 (2011).

[CrossRef]

L. Zhang, R. Lukac, X. Wu, and D. Zhang, “PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras,” IEEE Trans. Image Process. 18, 797–812 (2009).

[CrossRef]

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment,” IEEE Trans. Image Process. 20, 2378–2386 (2011).

[CrossRef]

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment,” IEEE Trans. Image Process. 20, 2378–2386 (2011).

[CrossRef]

L. Zhang, R. Lukac, X. Wu, and D. Zhang, “PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras,” IEEE Trans. Image Process. 18, 797–812 (2009).

[CrossRef]

H. X. Huang, J. Gong, and T. Zhang, “Method of adaptive wavelet thresholding used in image denoising,” Adv. Mater. Res 204, 1184–1187 (2011).

[CrossRef]

H. Yu, L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain,” IEEE Trans. Image Process. 18, 2364–2369 (2009).

[CrossRef]

Z.-F. Zhou and P.-L. Shui, “Contourlet-based image denoising algorithm using directional windows,” Electron. Lett. 43, 92–93 (2007).

[CrossRef]

H. X. Huang, J. Gong, and T. Zhang, “Method of adaptive wavelet thresholding used in image denoising,” Adv. Mater. Res 204, 1184–1187 (2011).

[CrossRef]

F. G. Meyer and R. R. Coifman, “Brushlets: a tool for directional image analysis and image compression,” Appl. Comput. Harmon. Anal. 4, 147–187 (1997).

[CrossRef]

G. G. Bhutada, R. S. Anand, and S. C. Saxena, “Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform,” Digital Signal Process. 21, 118–130 (2011).

[CrossRef]

Z.-F. Zhou and P.-L. Shui, “Contourlet-based image denoising algorithm using directional windows,” Electron. Lett. 43, 92–93 (2007).

[CrossRef]

P. Burt and E. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31, 532–540 (1983).

[CrossRef]

V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P. L. Dragotti, “Directionlets: anisotropic multidirectional representation with separable filtering,” IEEE Trans. Image Process. 15, 1916–1933 (2006).

[CrossRef]

J.-L. Starck, E. J. Candès, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Trans. Image Process. 11, 670–684 (2002).

[CrossRef]

M. N. Do and M. Vetterli, “The contourlet transform: an efficient directional multiresolution image representation,” IEEE Trans. Image Process. 14, 2091–2106 (2005).

[CrossRef]

L. Zhang, R. Lukac, X. Wu, and D. Zhang, “PCA-based spatially adaptive denoising of CFA images for single-sensor digital cameras,” IEEE Trans. Image Process. 18, 797–812 (2009).

[CrossRef]

E. Bae, J. Shi, and X.-C. Tai, “Graph cuts for curvature based image denoising,” IEEE Trans. Image Process. 20, 1199–1210 (2011).

[CrossRef]

H. Yu, L. Zhao, and H. Wang, “Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain,” IEEE Trans. Image Process. 18, 2364–2369 (2009).

[CrossRef]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).

[CrossRef]

L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: a feature similarity index for image quality assessment,” IEEE Trans. Image Process. 20, 2378–2386 (2011).

[CrossRef]

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “A novel fast and reduced redundancy structure for multiscale directional filter banks,” IEEE Trans. Image Process. 16, 2058–2068 (2007).

[CrossRef]

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41, 613–627 (1995).

[CrossRef]

T. S. Lee, “Image representation using 2D Gabor wavelets,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 959–971 (1996).

[CrossRef]

M. N. Do and M. Vetterli, “Framing pyramids,” IEEE Trans. Signal Process. 51, 2329–2342 (2003).

[CrossRef]

R. H. Bamberger and M. J. Smith, “A filter bank for the directional decomposition of images: theory and design,” IEEE Trans. Signal Process. 40, 882–893 (1992).

[CrossRef]

S. Sudha, G. R. Suresh, and R. Sukanesh, “Wavelet based image denoising using adaptive subband thresholding,” IJSC 2, 628–632 (2007).

S. Sutha, E. J. Leavline, and D. A. A. Gnana Sing, “IHNS: a pragmatic investigation on identifying highly noisy subband in FMDFB for fixing threshold to deteriorate noise in images,” Inf. Technol. J. 12, 1289–1298 (2013).

E. J. Leavline, S. Sutha, and D. A. A. G. Singh, “Wavelet domain shrinkage methods for noise removal in images. A compendium,” Int. J. Comput. Appl. Technol. 33, 28–32 (2011).

E. J. Leavline and D. A. A. G. Singh, “Enhanced modified decision based unsymmetric trimmed median filter for salt and pepper noise removal,” Int. J. Imaging Robot. 11, 46–56 (2013).

D. Cho, T. D. Bui, and G. Chen, “Image denoising based on wavelet shrinkage using neighbor and level dependency,” Int. J. Wavelets Multires. Inf. Process. 7, 299–311 (2009).

G. Andria, F. Attivissimo, G. Cavone, N. Giaquinto, and A. M. L. Lanzolla, “Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images,” Measurement 45, 1792–1800 (2012).

[CrossRef]

M. Nasri and H. Nezamabadi-pour, “Image denoising in the wavelet domain using a new adaptive thresholding function,” Neurocomputing 72, 1012–1025 (2009).

[CrossRef]

L. Shang, P. Su, and T. Liu, “Denoising MMW image using the combination method of contourlet and KSC shrinkage,” Neurocomputing 83, 229–233 (2012).

[CrossRef]

S. Mallat and G. Peyré, “A review of bandlet methods for geometrical image representation,” Numer. Algorithms 44, 205–234 (2007).

[CrossRef]

K.-O. Cheng, N.-F. Law, and W.-C. Siu, “Multiscale directional filter bank with applications to structured and random texture retrieval,” Pattern Recogn. 40, 1182–1194 (2007).

[CrossRef]

G. Y. Chen and B. Kégl, “Image denoising with complex ridgelets,” Pattern Recogn. 40, 578–585 (2007).

[CrossRef]

A. N. Akansu, W. A. Serdijn, and I. W. Selesnick, “Emerging applications of wavelets: a review,” Phys. Chem. Commun. 3, 1–18 (2010).

[CrossRef]

K. Guo and D. Labate, “Optimally sparse multidimensional representation using shearlets,” SIAM J. Math. Anal. 39, 298–318 (2007).

[CrossRef]

A. M. Atto, D. Pastor, and G. Mercier, “Wavelet shrinkage: unification of basic thresholding functions and thresholds,” Signal Image Video Process. 5, 11–28 (2011).

M. Forouzanfar, H. A. Moghaddam, and M. Gity, “A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images,” Signal Image Video Process. 4, 359–375 (2010).

S. Sutha, E. J. Leavline, and D. A. A. G. Singh, “A comprehensive study on wavelet based shrinkage methods for denoising natural images,” WSEAS Trans. Signal Process. 9, 203–215 (2013).

M. N. Do and M. Vetterli, “Pyramidal directional filter banks and curvelets,” in Proceedings of the 2001 International Conference on Image Processing (IEEE, 2001), Vol. 3, pp. 158–161.

M. N. Do, Directional Multiresolution Image Representations (Citeseer, 2001), Vol. 2500.

Z. Dan, X. Chen, H. Gan, and C. Gao, “Locally adaptive shearlet denoising based on bayesian MAP estimate,” in Sixth International Conference on Image and Graphics (ICIG, 2011), pp. 28–32.

J. Yang, R. Feng, and W. Deng, “A new algorithm of image denoising based on stationary wavelet multi-scale adaptive threshold,” in 2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT, 2011), Vol. 9, pp. 4550–4553.

L. Gang, L. Xutao, L. Xiaogeng, and F. Bo, “An adaptive denoising and enhancing algorithm based on the MAP rule in the contourlet domain for infrared image,” in International Conference on Computational Intelligence and Software Engineering (CiSE, 2009), pp. 1–5.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” in Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers (IEEE, 2003), Vol. 2, pp. 1398–1402.