Abstract

The Bobbert–Vlieger solution to light scattering of a spherical particle suspended above a surface is extended to model the scattering of core–shell structures with anisotropic shell. Numerical modeling demonstrates that ellipsometry has potential to resolve particle shell anisotropy down to 1.8×104 for SiO2@Au core–shell particles in air with 50 nm core diameter and 10 nm shell thickness deposited on a silicon Si [100] substrate with a density of 1μm2. Application of the Ibrahim and Bashara criterion for ellipsometer parameter cross correlation identifies variable-angle ellipsometry as a viable experimental approach to separate particle core radius and shell thickness from the shell anisotropy. Ellipsometry is also identified as an alternative technique for determination of liposome anisotropy and for the study of liposome fusion with a substrate in the formation process of supported lipid bilayers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Erickson and J. W. Tunnell, “Gold nanoshells in biomedical applications,” in Nanomaterials for the Life Sciences, C. S. S. R. Kumar, ed., Vol. 3: Mixed Metal Nanomaterials (Wiley-VCH, 2009), pp. 1–44.
  2. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
  3. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011).
    [CrossRef]
  4. D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).
  5. A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).
  6. M. Gonzales and K. M. Krishnan, “Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia,” J. Magn. Magn. Mater. 293, 265–270 (2005).
    [CrossRef]
  7. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  8. P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137A, 209–242 (1986).
    [CrossRef]
  9. Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orentiation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
    [CrossRef]
  10. C.-W. Lee, R. S. Decca, S. R. Wassall, and J. J. Breen, “Direct imaging of domains in the L β state of 1,2-dipalmitoylphosphatidylcholine bilayers,” Phys. Rev. E 67, 061914 (2003).
    [CrossRef]
  11. D. Den Engelsen, “Optical anisotropy in ordered systems of lipids,” Surf. Sci. 56, 272–280 (1976).
    [CrossRef]
  12. R. Horváth, G. Fricsovszky, and E. Papp, “Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition,” Biosens. Bioelectron. 18, 415–428 (2003).
    [CrossRef]
  13. A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008).
    [CrossRef]
  14. A. Erbe and R. Sigel, “Tilt angle of lipid acyl chains in unilamellar vesicles determined by ellipsometric light scattering,” Eur. Phys. J. E 22, 303–309 (2007).
    [CrossRef]
  15. R. P. Richter, R. Bérat, and A. R. Brisson, “Formation of solid-supported lipid bilayers: an integrated view,” Langmuir 22, 3497–3505 (2006).
    [CrossRef]
  16. C. J. Bouwkamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica 20, 539–554 (1954).
    [CrossRef]
  17. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  18. P. Bobbert, J. Vlieger, and R. Greef, “Light reflection from a substrate sparsely seeded with spheres—comparison with an ellipsometric experiment,” Physica A 137A, 243–257 (1986).
    [CrossRef]
  19. J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering from metallic particles on silicon wafers,” in Optical Metrology Roadmap for the Semiconductor, Optical and Data Storage Industries, A. Duparré and S. Bhanwar, eds. (SPIE, 2001), pp. 281–290.
  20. B. Kaplan and B. Drévillon, “Müller matrix measurements of small spherical particles deposited on a c-Si wafer,” Appl. Opt. 41, 3911–3918 (2002).
    [CrossRef]
  21. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
    [CrossRef]
  22. J. Roth and M. Dignam, “Scattering and extinction cross sections for a spherical particle coated with an oriented molecular layer,” J. Opt. Soc. Am. 63, 308–311 (1973).
    [CrossRef]
  23. B. Lange and S. R. Aragón, “Mie scattering from thin anisotropic spherical shells,” J. Chem. Phys. 92, 4643–4650 (1990).
    [CrossRef]
  24. D. K. Hahn and S. R. Aragón, “MIE scattering from anisotropic thick spherical shells,” J. Chem. Phys. 101, 8409–8417 (1994).
    [CrossRef]
  25. T. A. Germer, “SCATMECH: polarized light scattering C++ class library,” http://www.nist.gov/pml/div685/grp06/scattering_scatmech.cfm (2008).
  26. H. Fujiwara, Spectoscopic Ellipsometry: Principles and Applications (Maruzen Co. Ltd., 2005).
  27. M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.
  28. R. Horvath and J. J. Ramsden, “Quasi-isotropic analysis of anisotropic thin films on optical waveguides,” Langmuir 23, 9330–9334 (2007).
    [CrossRef]
  29. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965).
    [CrossRef]
  30. D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).
  31. W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
    [CrossRef]
  32. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
    [CrossRef]
  33. U. Kreibig and P. Zacharias, “Surface plasma resonances in small spherical silver and gold particles,” Z. Phys. 231, 128–143 (1970).
    [CrossRef]
  34. P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
  35. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  36. D. E. Aspnes and A. A. Studna, “High precision scanning ellipsometer,” Appl. Opt. 14, 220–228 (1975).
    [CrossRef]
  37. M. M. Ibrahim and M. Bashara, “Parameter-correlation and computational considerations in multiple-angle ellipsometry,” J. Opt. Soc. Am. 61, 1622–1629 (1971).
    [CrossRef]
  38. A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
    [CrossRef]
  39. J. H. van Zanten and H. G. Monbouquette, “Phosphatidylcholine vesicle diamter, molecular weight and wall thickness determined by static light scattering,” J. Colloid Interface Sci. 165, 512–518 (1994).
    [CrossRef]
  40. K. Mishima, K. Satoh, and T. Ogihara, “Optical birefringence of phosphatidylcholine liposmes in gel phases,” Biochim. Biophys. Acta 898, 231–238 (1987).
    [CrossRef]
  41. K. Mishima, K. Satoh, and K. Suzuki, “Optical birefringence of multilamellar gel phase of cholesterol/phosphatidylcholine mixtures,” Colloids Surf. B 7, 83–89 (1996).
    [CrossRef]
  42. K. Mishima, M. Nakajima, and T. Ogihara, “Effects of lysophospholipids on membrane order of phosphatidylcholine,” Colloids Surf. B 33, 185–189 (2004).
  43. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  44. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
    [CrossRef]
  45. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
    [CrossRef]

2011 (1)

M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011).
[CrossRef]

2010 (2)

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
[CrossRef]

2008 (1)

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008).
[CrossRef]

2007 (2)

A. Erbe and R. Sigel, “Tilt angle of lipid acyl chains in unilamellar vesicles determined by ellipsometric light scattering,” Eur. Phys. J. E 22, 303–309 (2007).
[CrossRef]

R. Horvath and J. J. Ramsden, “Quasi-isotropic analysis of anisotropic thin films on optical waveguides,” Langmuir 23, 9330–9334 (2007).
[CrossRef]

2006 (2)

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

R. P. Richter, R. Bérat, and A. R. Brisson, “Formation of solid-supported lipid bilayers: an integrated view,” Langmuir 22, 3497–3505 (2006).
[CrossRef]

2005 (1)

M. Gonzales and K. M. Krishnan, “Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia,” J. Magn. Magn. Mater. 293, 265–270 (2005).
[CrossRef]

2004 (1)

K. Mishima, M. Nakajima, and T. Ogihara, “Effects of lysophospholipids on membrane order of phosphatidylcholine,” Colloids Surf. B 33, 185–189 (2004).

2003 (3)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

C.-W. Lee, R. S. Decca, S. R. Wassall, and J. J. Breen, “Direct imaging of domains in the L β state of 1,2-dipalmitoylphosphatidylcholine bilayers,” Phys. Rev. E 67, 061914 (2003).
[CrossRef]

R. Horváth, G. Fricsovszky, and E. Papp, “Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition,” Biosens. Bioelectron. 18, 415–428 (2003).
[CrossRef]

2002 (1)

2001 (1)

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orentiation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

1998 (1)

1996 (2)

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

K. Mishima, K. Satoh, and K. Suzuki, “Optical birefringence of multilamellar gel phase of cholesterol/phosphatidylcholine mixtures,” Colloids Surf. B 7, 83–89 (1996).
[CrossRef]

1994 (3)

J. H. van Zanten and H. G. Monbouquette, “Phosphatidylcholine vesicle diamter, molecular weight and wall thickness determined by static light scattering,” J. Colloid Interface Sci. 165, 512–518 (1994).
[CrossRef]

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

D. K. Hahn and S. R. Aragón, “MIE scattering from anisotropic thick spherical shells,” J. Chem. Phys. 101, 8409–8417 (1994).
[CrossRef]

1993 (1)

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

1990 (1)

B. Lange and S. R. Aragón, “Mie scattering from thin anisotropic spherical shells,” J. Chem. Phys. 92, 4643–4650 (1990).
[CrossRef]

1989 (1)

W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

1987 (1)

K. Mishima, K. Satoh, and T. Ogihara, “Optical birefringence of phosphatidylcholine liposmes in gel phases,” Biochim. Biophys. Acta 898, 231–238 (1987).
[CrossRef]

1986 (2)

P. Bobbert, J. Vlieger, and R. Greef, “Light reflection from a substrate sparsely seeded with spheres—comparison with an ellipsometric experiment,” Physica A 137A, 243–257 (1986).
[CrossRef]

P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137A, 209–242 (1986).
[CrossRef]

1980 (1)

1976 (1)

D. Den Engelsen, “Optical anisotropy in ordered systems of lipids,” Surf. Sci. 56, 272–280 (1976).
[CrossRef]

1975 (1)

1973 (1)

1972 (1)

P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

1971 (1)

1970 (1)

U. Kreibig and P. Zacharias, “Surface plasma resonances in small spherical silver and gold particles,” Z. Phys. 231, 128–143 (1970).
[CrossRef]

1965 (1)

1954 (1)

C. J. Bouwkamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica 20, 539–554 (1954).
[CrossRef]

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Allen, C.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).

Amantea, M. A.

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

Anantharam, A.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
[CrossRef]

Aragón, S. R.

D. K. Hahn and S. R. Aragón, “MIE scattering from anisotropic thick spherical shells,” J. Chem. Phys. 101, 8409–8417 (1994).
[CrossRef]

B. Lange and S. R. Aragón, “Mie scattering from thin anisotropic spherical shells,” J. Chem. Phys. 92, 4643–4650 (1990).
[CrossRef]

Aspnes, D. E.

Au, L.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Axelrod, D.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
[CrossRef]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Barenholz, Y.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Bashara, M.

Bérat, R.

R. P. Richter, R. Bérat, and A. R. Brisson, “Formation of solid-supported lipid bilayers: an integrated view,” Langmuir 22, 3497–3505 (2006).
[CrossRef]

Bobbert, P.

P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137A, 209–242 (1986).
[CrossRef]

P. Bobbert, J. Vlieger, and R. Greef, “Light reflection from a substrate sparsely seeded with spheres—comparison with an ellipsometric experiment,” Physica A 137A, 243–257 (1986).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica 20, 539–554 (1954).
[CrossRef]

Breen, J. J.

C.-W. Lee, R. S. Decca, S. R. Wassall, and J. J. Breen, “Direct imaging of domains in the L β state of 1,2-dipalmitoylphosphatidylcholine bilayers,” Phys. Rev. E 67, 061914 (2003).
[CrossRef]

Brisson, A. R.

R. P. Richter, R. Bérat, and A. R. Brisson, “Formation of solid-supported lipid bilayers: an integrated view,” Langmuir 22, 3497–3505 (2006).
[CrossRef]

Casimir, H. B. G.

C. J. Bouwkamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica 20, 539–554 (1954).
[CrossRef]

Catane, R.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Chen, J.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Chithrani, D. B.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).

Christy, R.

P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Cohen, R.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Dal Negro, L.

M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.

Decca, R. S.

C.-W. Lee, R. S. Decca, S. R. Wassall, and J. J. Breen, “Direct imaging of domains in the L β state of 1,2-dipalmitoylphosphatidylcholine bilayers,” Phys. Rev. E 67, 061914 (2003).
[CrossRef]

Den Engelsen, D.

D. Den Engelsen, “Optical anisotropy in ordered systems of lipids,” Surf. Sci. 56, 272–280 (1976).
[CrossRef]

Dignam, M.

Djurišic, A. B.

Doyle, W.

W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

Drévillon, B.

Duan, X.

M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.

Dunne, M.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).

Edwards, R. H.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
[CrossRef]

Ehrman, S. H.

J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering from metallic particles on silicon wafers,” in Optical Metrology Roadmap for the Semiconductor, Optical and Data Storage Industries, A. Duparré and S. Bhanwar, eds. (SPIE, 2001), pp. 281–290.

Elazar, J. M.

Erbe, A.

A. Erbe and R. Sigel, “Tilt angle of lipid acyl chains in unilamellar vesicles determined by ellipsometric light scattering,” Eur. Phys. J. E 22, 303–309 (2007).
[CrossRef]

Erickson, T. A.

T. A. Erickson and J. W. Tunnell, “Gold nanoshells in biomedical applications,” in Nanomaterials for the Life Sciences, C. S. S. R. Kumar, ed., Vol. 3: Mixed Metal Nanomaterials (Wiley-VCH, 2009), pp. 1–44.

Fricsovszky, G.

R. Horváth, G. Fricsovszky, and E. Papp, “Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition,” Biosens. Bioelectron. 18, 415–428 (2003).
[CrossRef]

Fritz, S.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Fujiwara, H.

H. Fujiwara, Spectoscopic Ellipsometry: Principles and Applications (Maruzen Co. Ltd., 2005).

Gabizon, A.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Germer, T. A.

J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering from metallic particles on silicon wafers,” in Optical Metrology Roadmap for the Semiconductor, Optical and Data Storage Industries, A. Duparré and S. Bhanwar, eds. (SPIE, 2001), pp. 281–290.

Gonzales, M.

M. Gonzales and K. M. Krishnan, “Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia,” J. Magn. Magn. Mater. 293, 265–270 (2005).
[CrossRef]

Greef, R.

P. Bobbert, J. Vlieger, and R. Greef, “Light reflection from a substrate sparsely seeded with spheres—comparison with an ellipsometric experiment,” Physica A 137A, 243–257 (1986).
[CrossRef]

Haavisto, J.

M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.

Hahn, D. K.

D. K. Hahn and S. R. Aragón, “MIE scattering from anisotropic thick spherical shells,” J. Chem. Phys. 101, 8409–8417 (1994).
[CrossRef]

Halas, N. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Harland, G. V.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Hilger, A.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Holz, R. W.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
[CrossRef]

Horvath, R.

R. Horvath and J. J. Ramsden, “Quasi-isotropic analysis of anisotropic thin films on optical waveguides,” Langmuir 23, 9330–9334 (2007).
[CrossRef]

Horváth, R.

R. Horváth, G. Fricsovszky, and E. Papp, “Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition,” Biosens. Bioelectron. 18, 415–428 (2003).
[CrossRef]

Hövel, H.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

Hu, M.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Huang, A.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Ibrahim, M. M.

Jaffray, D. A.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).

Johnson, P.

P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Kaplan, B.

Kaplan, L. D.

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

Kaufman, B.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Kim, J. H.

J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering from metallic particles on silicon wafers,” in Optical Metrology Roadmap for the Semiconductor, Optical and Data Storage Industries, A. Duparré and S. Bhanwar, eds. (SPIE, 2001), pp. 281–290.

Kimerling, L. C.

M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.

Kreibig, U.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

U. Kreibig and P. Zacharias, “Surface plasma resonances in small spherical silver and gold particles,” Z. Phys. 231, 128–143 (1970).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Krishnan, K. M.

M. Gonzales and K. M. Krishnan, “Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia,” J. Magn. Magn. Mater. 293, 265–270 (2005).
[CrossRef]

Lange, B.

B. Lange and S. R. Aragón, “Mie scattering from thin anisotropic spherical shells,” J. Chem. Phys. 92, 4643–4650 (1990).
[CrossRef]

Laurent, S.

M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011).
[CrossRef]

Lee, C.-W.

C.-W. Lee, R. S. Decca, S. R. Wassall, and J. J. Breen, “Direct imaging of domains in the L β state of 1,2-dipalmitoylphosphatidylcholine bilayers,” Phys. Rev. E 67, 061914 (2003).
[CrossRef]

Li, X.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Li, Z.-Y.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Mahmoudi, M.

M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011).
[CrossRef]

Majewski, M. L.

Malitson, I. H.

Marquez, M.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Martin, F.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Martin, F. J.

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

Mashaghi, A.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008).
[CrossRef]

Michel, J.

M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Mishima, K.

K. Mishima, M. Nakajima, and T. Ogihara, “Effects of lysophospholipids on membrane order of phosphatidylcholine,” Colloids Surf. B 33, 185–189 (2004).

K. Mishima, K. Satoh, and K. Suzuki, “Optical birefringence of multilamellar gel phase of cholesterol/phosphatidylcholine mixtures,” Colloids Surf. B 7, 83–89 (1996).
[CrossRef]

K. Mishima, K. Satoh, and T. Ogihara, “Optical birefringence of phosphatidylcholine liposmes in gel phases,” Biochim. Biophys. Acta 898, 231–238 (1987).
[CrossRef]

Monbouquette, H. G.

J. H. van Zanten and H. G. Monbouquette, “Phosphatidylcholine vesicle diamter, molecular weight and wall thickness determined by static light scattering,” J. Colloid Interface Sci. 165, 512–518 (1994).
[CrossRef]

Mulholland, G. W.

J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering from metallic particles on silicon wafers,” in Optical Metrology Roadmap for the Semiconductor, Optical and Data Storage Industries, A. Duparré and S. Bhanwar, eds. (SPIE, 2001), pp. 281–290.

Nakajima, M.

K. Mishima, M. Nakajima, and T. Ogihara, “Effects of lysophospholipids on membrane order of phosphatidylcholine,” Colloids Surf. B 33, 185–189 (2004).

Newman, M.

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

Northfelt, D. W.

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

Ogihara, T.

K. Mishima, M. Nakajima, and T. Ogihara, “Effects of lysophospholipids on membrane order of phosphatidylcholine,” Colloids Surf. B 33, 185–189 (2004).

K. Mishima, K. Satoh, and T. Ogihara, “Optical birefringence of phosphatidylcholine liposmes in gel phases,” Biochim. Biophys. Acta 898, 231–238 (1987).
[CrossRef]

Onoa, B.

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
[CrossRef]

Papp, E.

R. Horváth, G. Fricsovszky, and E. Papp, “Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition,” Biosens. Bioelectron. 18, 415–428 (2003).
[CrossRef]

Popplewell, J.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Rakic, A. D.

Ramsden, J. J.

R. Horvath and J. J. Ramsden, “Quasi-isotropic analysis of anisotropic thin films on optical waveguides,” Langmuir 23, 9330–9334 (2007).
[CrossRef]

Reimhult, E.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008).
[CrossRef]

Richter, R. P.

R. P. Richter, R. Bérat, and A. R. Brisson, “Formation of solid-supported lipid bilayers: an integrated view,” Langmuir 22, 3497–3505 (2006).
[CrossRef]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Roth, J.

Russell, J.

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

Safra, T.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Salamon, Z.

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orentiation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

Sant, S.

M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011).
[CrossRef]

Satoh, K.

K. Mishima, K. Satoh, and K. Suzuki, “Optical birefringence of multilamellar gel phase of cholesterol/phosphatidylcholine mixtures,” Colloids Surf. B 7, 83–89 (1996).
[CrossRef]

K. Mishima, K. Satoh, and T. Ogihara, “Optical birefringence of phosphatidylcholine liposmes in gel phases,” Biochim. Biophys. Acta 898, 231–238 (1987).
[CrossRef]

Sen, T.

M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011).
[CrossRef]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Sigel, R.

A. Erbe and R. Sigel, “Tilt angle of lipid acyl chains in unilamellar vesicles determined by ellipsometric light scattering,” Eur. Phys. J. E 22, 303–309 (2007).
[CrossRef]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Stewart, J.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).

Stolfi, M. A.

M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.

Studna, A. A.

Suzuki, K.

K. Mishima, K. Satoh, and K. Suzuki, “Optical birefringence of multilamellar gel phase of cholesterol/phosphatidylcholine mixtures,” Colloids Surf. B 7, 83–89 (1996).
[CrossRef]

Swann, M.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008).
[CrossRef]

Textor, M.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008).
[CrossRef]

Tollin, G.

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orentiation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

Tunnell, J. W.

T. A. Erickson and J. W. Tunnell, “Gold nanoshells in biomedical applications,” in Nanomaterials for the Life Sciences, C. S. S. R. Kumar, ed., Vol. 3: Mixed Metal Nanomaterials (Wiley-VCH, 2009), pp. 1–44.

Uziely, B.

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

van Zanten, J. H.

J. H. van Zanten and H. G. Monbouquette, “Phosphatidylcholine vesicle diamter, molecular weight and wall thickness determined by static light scattering,” J. Colloid Interface Sci. 165, 512–518 (1994).
[CrossRef]

Vlieger, J.

P. Bobbert, J. Vlieger, and R. Greef, “Light reflection from a substrate sparsely seeded with spheres—comparison with an ellipsometric experiment,” Physica A 137A, 243–257 (1986).
[CrossRef]

P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137A, 209–242 (1986).
[CrossRef]

Volberding, P. A.

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

Vollmer, M.

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Wang, B.

M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011).
[CrossRef]

Wassall, S. R.

C.-W. Lee, R. S. Decca, S. R. Wassall, and J. J. Breen, “Direct imaging of domains in the L β state of 1,2-dipalmitoylphosphatidylcholine bilayers,” Phys. Rev. E 67, 061914 (2003).
[CrossRef]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Wiscombe, W. J.

Working, P.

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

Xia, Y.

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Zacharias, P.

U. Kreibig and P. Zacharias, “Surface plasma resonances in small spherical silver and gold particles,” Z. Phys. 231, 128–143 (1970).
[CrossRef]

Adv. Drug Delivery Rev. (1)

M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy,” Adv. Drug Delivery Rev. 63, 24–46 (2011).
[CrossRef]

Anal. Chem. (1)

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem. 80, 3666–3676 (2008).
[CrossRef]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Opt. (4)

Biochim. Biophys. Acta (1)

K. Mishima, K. Satoh, and T. Ogihara, “Optical birefringence of phosphatidylcholine liposmes in gel phases,” Biochim. Biophys. Acta 898, 231–238 (1987).
[CrossRef]

Biophys. J. (1)

Z. Salamon and G. Tollin, “Optical anisotropy in lipid bilayer membranes: coupled plasmon-waveguide resonance measurements of molecular orentiation, polarizability, and shape,” Biophys. J. 80, 1557–1567 (2001).
[CrossRef]

Biosens. Bioelectron. (1)

R. Horváth, G. Fricsovszky, and E. Papp, “Application of the optical waveguide lightmode spectroscopy to monitor lipid bilayer phase transition,” Biosens. Bioelectron. 18, 415–428 (2003).
[CrossRef]

Cancer Res. (1)

A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang, and Y. Barenholz, “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Res. 54, 987–992 (1994).

Chem. Soc. Rev. (1)

M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Harland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Colloids Surf. B (2)

K. Mishima, K. Satoh, and K. Suzuki, “Optical birefringence of multilamellar gel phase of cholesterol/phosphatidylcholine mixtures,” Colloids Surf. B 7, 83–89 (1996).
[CrossRef]

K. Mishima, M. Nakajima, and T. Ogihara, “Effects of lysophospholipids on membrane order of phosphatidylcholine,” Colloids Surf. B 33, 185–189 (2004).

Eur. Phys. J. E (1)

A. Erbe and R. Sigel, “Tilt angle of lipid acyl chains in unilamellar vesicles determined by ellipsometric light scattering,” Eur. Phys. J. E 22, 303–309 (2007).
[CrossRef]

J. Appl. Phys. (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

J. Cell Biol. (1)

A. Anantharam, B. Onoa, R. H. Edwards, R. W. Holz, and D. Axelrod, “Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM,” J. Cell Biol. 188, 415–428 (2010).
[CrossRef]

J. Chem. Phys. (2)

B. Lange and S. R. Aragón, “Mie scattering from thin anisotropic spherical shells,” J. Chem. Phys. 92, 4643–4650 (1990).
[CrossRef]

D. K. Hahn and S. R. Aragón, “MIE scattering from anisotropic thick spherical shells,” J. Chem. Phys. 101, 8409–8417 (1994).
[CrossRef]

J. Clin. Pharmacol. (1)

D. W. Northfelt, F. J. Martin, P. Working, P. A. Volberding, J. Russell, M. Newman, M. A. Amantea, and L. D. Kaplan, “Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi’s sarcoma,” J. Clin. Pharmacol. 36, 55–63 (1996).

J. Colloid Interface Sci. (1)

J. H. van Zanten and H. G. Monbouquette, “Phosphatidylcholine vesicle diamter, molecular weight and wall thickness determined by static light scattering,” J. Colloid Interface Sci. 165, 512–518 (1994).
[CrossRef]

J. Magn. Magn. Mater. (1)

M. Gonzales and K. M. Krishnan, “Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia,” J. Magn. Magn. Mater. 293, 265–270 (2005).
[CrossRef]

J. Opt. Soc. Am. (3)

Langmuir (2)

R. P. Richter, R. Bérat, and A. R. Brisson, “Formation of solid-supported lipid bilayers: an integrated view,” Langmuir 22, 3497–3505 (2006).
[CrossRef]

R. Horvath and J. J. Ramsden, “Quasi-isotropic analysis of anisotropic thin films on optical waveguides,” Langmuir 23, 9330–9334 (2007).
[CrossRef]

Nanomedicine (1)

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, and D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6, 161–169 (2010).

Phys. Rev. B (3)

W. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989).
[CrossRef]

H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188 (1993).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Phys. Rev. E (1)

C.-W. Lee, R. S. Decca, S. R. Wassall, and J. J. Breen, “Direct imaging of domains in the L β state of 1,2-dipalmitoylphosphatidylcholine bilayers,” Phys. Rev. E 67, 061914 (2003).
[CrossRef]

Physica (1)

C. J. Bouwkamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica 20, 539–554 (1954).
[CrossRef]

Physica A (2)

P. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137A, 209–242 (1986).
[CrossRef]

P. Bobbert, J. Vlieger, and R. Greef, “Light reflection from a substrate sparsely seeded with spheres—comparison with an ellipsometric experiment,” Physica A 137A, 243–257 (1986).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).

Surf. Sci. (1)

D. Den Engelsen, “Optical anisotropy in ordered systems of lipids,” Surf. Sci. 56, 272–280 (1976).
[CrossRef]

Z. Phys. (1)

U. Kreibig and P. Zacharias, “Surface plasma resonances in small spherical silver and gold particles,” Z. Phys. 231, 128–143 (1970).
[CrossRef]

Other (7)

T. A. Germer, “SCATMECH: polarized light scattering C++ class library,” http://www.nist.gov/pml/div685/grp06/scattering_scatmech.cfm (2008).

H. Fujiwara, Spectoscopic Ellipsometry: Principles and Applications (Maruzen Co. Ltd., 2005).

M. A. Stolfi, L. Dal Negro, J. Michel, X. Duan, L. C. Kimerling, and J. Haavisto, “Anomalous birefringence in annealed Si-rich silicon dioxide,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (CD) (Optical Society of America, 2006), paper IMB5.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

T. A. Erickson and J. W. Tunnell, “Gold nanoshells in biomedical applications,” in Nanomaterials for the Life Sciences, C. S. S. R. Kumar, ed., Vol. 3: Mixed Metal Nanomaterials (Wiley-VCH, 2009), pp. 1–44.

J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering from metallic particles on silicon wafers,” in Optical Metrology Roadmap for the Semiconductor, Optical and Data Storage Industries, A. Duparré and S. Bhanwar, eds. (SPIE, 2001), pp. 281–290.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Scattering geometry.

Fig. 2.
Fig. 2.

Angle of incidence-resolved sensitivity of ellipsometry angle Ψ with respect to shell anisotropy for sample A.

Fig. 3.
Fig. 3.

Angle of incidence-resolved sensitivity of ellipsometry angle Δ with respect to shell anisotropy for sample A.

Fig. 4.
Fig. 4.

Spectrally resolved ellipsometry angle Δ for shell anisotropy values of 0, 0.05, and 0.1 (sample A).

Fig. 5.
Fig. 5.

Spectrally resolved difference in ellipsometry angle Δ between a shell with Δn=0.1 and Δn=0 for average shell anisotropy values of nSiO2, nSiO2+0.2, and nSiO2+0.4 (sample A).

Fig. 6.
Fig. 6.

Ibrahim and Bashara criterion detailing ellipsometry parameter cross correlation of particle shell anisotropy Δn and shell thickness d for sample A.

Fig. 7.
Fig. 7.

Ibrahim and Bashara criterion detailing ellipsometry parameter cross correlation of particle shell anisotropy Δn and core radius r for sample A.

Fig. 8.
Fig. 8.

Lipid-induced anisotropy effect on ellipsometry angles Ψ and Δ for sample C.

Fig. 9.
Fig. 9.

Wavelength-resolved shift in Δ angle induced by a lipid anisotropy of 0.1 for sample C.

Fig. 10.
Fig. 10.

Ellipsometry angles Ψ and Δ for sample C suspended above a silicon substrate at different heights r. The inset shows δΨ and δΔ, the difference in Ψ and Δ between DPPC liposomes with and without shell anisotropy, respectively.

Fig. 11.
Fig. 11.

Ellipsometry angle Δ for sample C upon variation of liposome lumen diameter r and height above substrate δR.

Fig. 12.
Fig. 12.

Extinction coefficient for a solution of 25 and 12.5 nm radius gold nanoparticles embedded in a medium with refractive index nmed.

Fig. 13.
Fig. 13.

Angle of incidence-resolved sensitivity of ellipsometry angle Ψ with respect to shell anisotropy for sample B.

Fig. 14.
Fig. 14.

Angle of incidence-resolved sensitivity of ellipsometry angle Δ with respect to shell anisotropy for sample B.

Fig. 15.
Fig. 15.

Spectrally resolved difference in ellipsometry angle Δ between a shell with Δn=0.1 and Δn=0 for average shell anisotropy values of nSiO2, nSiO2+0.2, and nSiO2+0.4 (sample B).

Fig. 16.
Fig. 16.

Convergence of the solution for sample C as a function of the number of spherical harmonic orders considered. Wiscombe’s criterion for this sample is indicated.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

WS=(1B·A)1·B·(VI+VIR),
ψn(z)(πz/2)1/2Jn+1/2(z),
χn(z)(πz/2)1/2Yn+1/2(z),
ζn(z)ψn(z)iχn(z),
an=[ψψ]n,αe[χψ]n,νe[χψ]n,αe[ψψ]n,νe[ψψ]n,αe[ψζ]n,νe[χψ]n,αe[ψζ]n,νe,
bn=[ψψ]n,αm[χψ]n,νm[χψ]n,αm[ψψ]n,νm[ψψ]n,αm[ψζ]n,νm[χψ]n,αm[ψζ]n,νm,
[χψ]n,αe=m3χen(mtα)ψnm(m3α)mtχne(mtα)ψnm(m3α),
[χψ]n,νe=χen(mtν)ψnm(ν)mtχen(mtν)ψmn(ν),
[χψ]n,αm=mtχmn(mtα)ψnm(m3α)m3χnm(mtα)ψnm(m3α),
[χψ]n,νm=mtχmn(mtν)ψnm(m3ν)χnm(mtν)ψnm(m3ν),
mt=(ϵt/ϵ1)1/2,m3=(ϵ3/ϵ1)1/2,
α=2π(Rd)/λ,ν=2πR/λ,
ψne(z)(πz/2)1/2Jwe(z),
χne(z)(πz/2)1/2Ywe(z),
ζne(z)ψne(z)iχne(z).
we=[n2(ϵtϵn)+n(ϵtϵn)+14]12,
wm=n+12.
ρ(θi,λ)tanΨeiΔ=rprs=(Er,pEi,p)/(Er,sEi,s),
D=ϵ0ϵE
M1,1=M2,2,M1,2=M2,1,M3,3=M4,4,M3,4=M4,3,M1,3=M1,4=M2,3=M2,4=0,M3,1=M3,2=M4,2=M4,2=0.
M¯i,j=Mi,jM1,1;(i,j)(1,1).
Δn=nnnt,
navg2=nn23+2nt23.
ϵ(ω,r)=ϵbulk(ω)+ωp2ω2+iωγ0ωp2ω2+iω(γ0+Avf/r),
Λα(x0,y0,α0)[(Δx|x0)/(Δy|y0)]α=α0,
Cext=24π2R2ϵmed3/2λϵi(ϵr+2ϵmed)2+ϵi2,
LWISx+4x1/3+2.

Metrics