M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).

[CrossRef]

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).

[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18, 2797–2807 (2010).

[CrossRef]

R. A. de la Osa, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Extended discrete dipole approximation and its application to bianisotropic media,” Opt. Express 18, 23865–23871 (2010).

[CrossRef]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).

[CrossRef]

H.-Y. Xie, M.-Y. Ng, and Y.-C. Chang, “Analytical solutions to light scattering by plasmonic nanoparticles with nearly spherical shape and nonlocal effect,” J. Opt. Soc. Am. A 27, 2411–2422 (2010).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

[CrossRef]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

[CrossRef]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).

[CrossRef]

N. B. Piller and O. J. F. Martin, “Increasing the performance of the coupled-dipole approximation: a spectral approach,” IEEE Trans. Antennas Propag. 46, 1126–1137 (1998).

[CrossRef]

B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).

[CrossRef]

C. Smith, A. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[CrossRef]

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).

[CrossRef]

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732–1740 (1975).

[CrossRef]

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

[CrossRef]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

[CrossRef]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).

[CrossRef]

B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).

[CrossRef]

J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast-Fourier-transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991).

[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[CrossRef]

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” arXiv astro-ph/0403082 (2004).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).

[CrossRef]

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732–1740 (1975).

[CrossRef]

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).

[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).

[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18, 2797–2807 (2010).

[CrossRef]

V. Giannini, J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577 (2009).

[CrossRef]

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” arXiv astro-ph/0403082 (2004).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

[CrossRef]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

[CrossRef]

M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).

[CrossRef]

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).

[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).

[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18, 2797–2807 (2010).

[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

N. B. Piller and O. J. F. Martin, “Increasing the performance of the coupled-dipole approximation: a spectral approach,” IEEE Trans. Antennas Propag. 46, 1126–1137 (1998).

[CrossRef]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).

[CrossRef]

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).

[CrossRef]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).

[CrossRef]

C. Smith, A. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[CrossRef]

C. Smith, A. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[CrossRef]

N. B. Piller and O. J. F. Martin, “Increasing the performance of the coupled-dipole approximation: a spectral approach,” IEEE Trans. Antennas Propag. 46, 1126–1137 (1998).

[CrossRef]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).

[CrossRef]

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[CrossRef]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004).

[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18, 2797–2807 (2010).

[CrossRef]

V. Giannini, J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577 (2009).

[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18, 2797–2807 (2010).

[CrossRef]

V. Giannini, J. A. Sánchez-Gil, O. L. Muskens, and J. G. Rivas, “Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence,” J. Opt. Soc. Am. B 26, 1569–1577 (2009).

[CrossRef]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004).

[CrossRef]

C. Smith, A. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[CrossRef]

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).

[CrossRef]

M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

[CrossRef]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

[CrossRef]

M. A. Yurkin, “Computational approaches for plasmonics,” in Handbook of Molecular Plasmonics, F. Della Sala and S. D’Agostino, eds. (Pan Stanford, 2013), pp. 83–135.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[CrossRef]

B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).

[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011).

[CrossRef]

C. Smith, A. Peterson, and R. Mittra, “A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields,” IEEE Trans. Antennas Propag. 37, 1490–1493 (1989).

[CrossRef]

N. B. Piller and O. J. F. Martin, “Increasing the performance of the coupled-dipole approximation: a spectral approach,” IEEE Trans. Antennas Propag. 46, 1126–1137 (1998).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

[CrossRef]

M. A. Yurkin and M. Kahnert, “Light scattering by a cube: accuracy limits of the discrete dipole approximation and the T-matrix method,” J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).

[CrossRef]

E. Massa, S. A. Maier, and V. Giannini, “An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas,” New J. Phys. 15, 063013 (2013).

[CrossRef]

R. A. de la Osa, P. Albella, J. M. Saiz, F. González, and F. Moreno, “Extended discrete dipole approximation and its application to bianisotropic media,” Opt. Express 18, 23865–23871 (2010).

[CrossRef]

D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magneto-optical scattering calculations,” Opt. Express 14, 5746–5754 (2006).

[CrossRef]

V. Giannini, A. Berrier, S. A. Maier, J. A. Sánchez-Gil, and J. G. Rivas, “Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies,” Opt. Express 18, 2797–2807 (2010).

[CrossRef]

R. Fuchs, “Theory of the optical properties of ionic crystal cubes,” Phys. Rev. B 11, 1732–1740 (1975).

[CrossRef]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).

[CrossRef]

O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998).

[CrossRef]

P. C. Chaumet, A. Sentenac, and A. Rahmani, “Coupled dipole method for scatterers with large permittivity,” Phys. Rev. E 70, 036606 (2004).

[CrossRef]

A. D. Yaghjian, “Electric dyadic Green’s functions in the source region,” Proc. IEEE 68, 248–263 (1980).

[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

M. A. Yurkin and A. G. Hoekstra, “User manual for the discrete dipole approximation code ADDA 1.2,” 2013, http://a-dda.googlecode.com/svn/tags/rel_1.2/doc/manual.pdf .

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” arXiv astro-ph/0403082 (2004).

M. A. Yurkin, “Computational approaches for plasmonics,” in Handbook of Molecular Plasmonics, F. Della Sala and S. D’Agostino, eds. (Pan Stanford, 2013), pp. 83–135.