D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

S. Lim, D. L. Marks, and D. J. Brady, “Sampling and processing for compressive holography [Invited],” Appl. Opt. 50, H75–H86 (2011).

[CrossRef]

C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” Proc. SPIE 8043, 80430S (2011).

[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).

[CrossRef]

Y. Choi and S. Lee, “Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow,” Microfluid. Nanofluid. 9, 819–829 (2010).

[CrossRef]

Y. Rivenson, A. Stern, and B. Javidi, “Compressive fresnel holography,” J. Display Technol. 6, 506–509 (2010).

[CrossRef]

X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography” J. Opt. Soc. Am. A 27, 1630–1637 (2010).

[CrossRef]

M. Marim, M. Atlan, E. Angelini, and J. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010).

[CrossRef]

F. CH. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).

[CrossRef]

C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography,” J. Opt. Soc. Am. A 27, 1856–1862 (2010).

[CrossRef]

L. Denis, D. A. Lorenz, and D. Trede, “Greedy solution of ill-posed problems: error bounds and exact inversion,” Inverse Probl. 25, 115017 (2009).

[CrossRef]

D. Needell and J. Tropp, “Cosamp: iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26, 301–321 (2009).

[CrossRef]

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009).

[CrossRef]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[CrossRef]

F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Ann. Rev. Fluid Mech. 41, 375–404 (2009).

[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer,” J. Fluid Mech. 633, 17–60 (2009).

[CrossRef]

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008).

[CrossRef]

F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

J. Reveillon and F. Demoulin, “Effects of the preferential segregation of droplets on evaporation and turbulent mixing,” J. Fluid Mech. 583, 273–302 (2007).

[CrossRef]

F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).

[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005).

[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional–two-components particle tracking velocimetry,” Meas. Sci. Technol. 15, 699–705 (2004).

[CrossRef]

L. Huang, K. Kumar, and A. S. Mujumdar, “Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model,” Dry. Technol. 22, 1489–1515 (2004).

[CrossRef]

S. Sotthivirat and J. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am. A 21, 737–750 (2004).

[CrossRef]

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).

[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).

[CrossRef]

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).

[CrossRef]

M. Ellero, M. Kröger, and S. Hess, “Viscoelastic flows studied by smoothed particle dynamics,” J. Non-Newton. Fluid Mech. 105, 35–51 (2002).

[CrossRef]

Murata, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).

[CrossRef]

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000).

[CrossRef]

M. Unser, A. Aldroubi, and M. Eden, “The L2 polynomial spline pyramid,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 364–379 (1993).

[CrossRef]

L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett. 18, 846–848 (1993).

[CrossRef]

S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).

[CrossRef]

T. J. Pedley and J. O. Kessler, “Hydrodynamic phenomena in suspensions of swimming microorganisms,” Ann. Rev. Fluid Mech. 24, 313–358 (1992).

[CrossRef]

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis—a reassessment,” J. Mod. Opt. 23, 685–700 (1976).

[CrossRef]

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Series 15, 417–426 (1974).

H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5, 87–93 (1974).

[CrossRef]

M. Unser, A. Aldroubi, and M. Eden, “The L2 polynomial spline pyramid,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 364–379 (1993).

[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005).

[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional–two-components particle tracking velocimetry,” Meas. Sci. Technol. 15, 699–705 (2004).

[CrossRef]

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).

[CrossRef]

F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Ann. Rev. Fluid Mech. 41, 375–404 (2009).

[CrossRef]

S. Lim, D. L. Marks, and D. J. Brady, “Sampling and processing for compressive holography [Invited],” Appl. Opt. 50, H75–H86 (2011).

[CrossRef]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[CrossRef]

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000).

[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

Y. Choi and S. Lee, “Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow,” Microfluid. Nanofluid. 9, 819–829 (2010).

[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional–two-components particle tracking velocimetry,” Meas. Sci. Technol. 15, 699–705 (2004).

[CrossRef]

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000).

[CrossRef]

J. Reveillon and F. Demoulin, “Effects of the preferential segregation of droplets on evaporation and turbulent mixing,” J. Fluid Mech. 583, 273–302 (2007).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” Proc. SPIE 8043, 80430S (2011).

[CrossRef]

C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography,” J. Opt. Soc. Am. A 27, 1856–1862 (2010).

[CrossRef]

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009).

[CrossRef]

L. Denis, D. A. Lorenz, and D. Trede, “Greedy solution of ill-posed problems: error bounds and exact inversion,” Inverse Probl. 25, 115017 (2009).

[CrossRef]

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008).

[CrossRef]

F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).

[CrossRef]

F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).

[CrossRef]

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008).

[CrossRef]

M. Unser, A. Aldroubi, and M. Eden, “The L2 polynomial spline pyramid,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 364–379 (1993).

[CrossRef]

M. Ellero, M. Kröger, and S. Hess, “Viscoelastic flows studied by smoothed particle dynamics,” J. Non-Newton. Fluid Mech. 105, 35–51 (2002).

[CrossRef]

C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” Proc. SPIE 8043, 80430S (2011).

[CrossRef]

C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography,” J. Opt. Soc. Am. A 27, 1856–1862 (2010).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” Proc. SPIE 8043, 80430S (2011).

[CrossRef]

C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography,” J. Opt. Soc. Am. A 27, 1856–1862 (2010).

[CrossRef]

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009).

[CrossRef]

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008).

[CrossRef]

F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).

[CrossRef]

F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008).

[CrossRef]

F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).

[CrossRef]

F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).

[CrossRef]

F. CH. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

M. Ellero, M. Kröger, and S. Hess, “Viscoelastic flows studied by smoothed particle dynamics,” J. Non-Newton. Fluid Mech. 105, 35–51 (2002).

[CrossRef]

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Series 15, 417–426 (1974).

L. Huang, K. Kumar, and A. S. Mujumdar, “Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model,” Dry. Technol. 22, 1489–1515 (2004).

[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).

[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer,” J. Fluid Mech. 633, 17–60 (2009).

[CrossRef]

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).

[CrossRef]

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, 1st ed. (Prentice Hall, 1993).

T. J. Pedley and J. O. Kessler, “Hydrodynamic phenomena in suspensions of swimming microorganisms,” Ann. Rev. Fluid Mech. 24, 313–358 (1992).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, 1st ed. (Wiley-VCH, 2005).

M. Ellero, M. Kröger, and S. Hess, “Viscoelastic flows studied by smoothed particle dynamics,” J. Non-Newton. Fluid Mech. 105, 35–51 (2002).

[CrossRef]

L. Huang, K. Kumar, and A. S. Mujumdar, “Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model,” Dry. Technol. 22, 1489–1515 (2004).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005).

[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional–two-components particle tracking velocimetry,” Meas. Sci. Technol. 15, 699–705 (2004).

[CrossRef]

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000).

[CrossRef]

Y. Choi and S. Lee, “Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow,” Microfluid. Nanofluid. 9, 819–829 (2010).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).

[CrossRef]

S. Lim, D. L. Marks, and D. J. Brady, “Sampling and processing for compressive holography [Invited],” Appl. Opt. 50, H75–H86 (2011).

[CrossRef]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[CrossRef]

L. Denis, D. A. Lorenz, and D. Trede, “Greedy solution of ill-posed problems: error bounds and exact inversion,” Inverse Probl. 25, 115017 (2009).

[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005).

[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional–two-components particle tracking velocimetry,” Meas. Sci. Technol. 15, 699–705 (2004).

[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer,” J. Fluid Mech. 633, 17–60 (2009).

[CrossRef]

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).

[CrossRef]

S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

S. Lim, D. L. Marks, and D. J. Brady, “Sampling and processing for compressive holography [Invited],” Appl. Opt. 50, H75–H86 (2011).

[CrossRef]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

L. Huang, K. Kumar, and A. S. Mujumdar, “Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model,” Dry. Technol. 22, 1489–1515 (2004).

[CrossRef]

Murata, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).

[CrossRef]

D. Needell and J. Tropp, “Cosamp: iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26, 301–321 (2009).

[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional–two-components particle tracking velocimetry,” Meas. Sci. Technol. 15, 699–705 (2004).

[CrossRef]

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000).

[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005).

[CrossRef]

T. J. Pedley and J. O. Kessler, “Hydrodynamic phenomena in suspensions of swimming microorganisms,” Ann. Rev. Fluid Mech. 24, 313–358 (1992).

[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005).

[CrossRef]

J. Reveillon and F. Demoulin, “Effects of the preferential segregation of droplets on evaporation and turbulent mixing,” J. Fluid Mech. 583, 273–302 (2007).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5, 87–93 (1974).

[CrossRef]

C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” Proc. SPIE 8043, 80430S (2011).

[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).

[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer,” J. Fluid Mech. 633, 17–60 (2009).

[CrossRef]

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).

[CrossRef]

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008).

[CrossRef]

F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).

[CrossRef]

F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).

[CrossRef]

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).

[CrossRef]

C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” Proc. SPIE 8043, 80430S (2011).

[CrossRef]

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009).

[CrossRef]

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008).

[CrossRef]

F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).

[CrossRef]

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis—a reassessment,” J. Mod. Opt. 23, 685–700 (1976).

[CrossRef]

F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Ann. Rev. Fluid Mech. 41, 375–404 (2009).

[CrossRef]

L. Denis, D. A. Lorenz, and D. Trede, “Greedy solution of ill-posed problems: error bounds and exact inversion,” Inverse Probl. 25, 115017 (2009).

[CrossRef]

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009).

[CrossRef]

D. Needell and J. Tropp, “Cosamp: iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26, 301–321 (2009).

[CrossRef]

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis—a reassessment,” J. Mod. Opt. 23, 685–700 (1976).

[CrossRef]

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).

[CrossRef]

M. Unser, A. Aldroubi, and M. Eden, “The L2 polynomial spline pyramid,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 364–379 (1993).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).

[CrossRef]

T. J. Pedley and J. O. Kessler, “Hydrodynamic phenomena in suspensions of swimming microorganisms,” Ann. Rev. Fluid Mech. 24, 313–358 (1992).

[CrossRef]

F. Toschi and E. Bodenschatz, “Lagrangian properties of particles in turbulence,” Ann. Rev. Fluid Mech. 41, 375–404 (2009).

[CrossRef]

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Ann. Rev. Fluid Mech. 42, 531–555 (2010).

[CrossRef]

D. Needell and J. Tropp, “Cosamp: iterative signal recovery from incomplete and inaccurate samples,” Appl. Comput. Harmon. Anal. 26, 301–321 (2009).

[CrossRef]

J. A. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astron. Astrophys. Suppl. Series 15, 417–426 (1974).

L. Huang, K. Kumar, and A. S. Mujumdar, “Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model,” Dry. Technol. 22, 1489–1515 (2004).

[CrossRef]

S. L. Pu, D. Allano, B. Patte-Rouland, M. Malek, D. Lebrun, and K. F. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids 39, 1–9(2005).

[CrossRef]

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).

[CrossRef]

M. Unser, A. Aldroubi, and M. Eden, “The L2 polynomial spline pyramid,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 364–379 (1993).

[CrossRef]

S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).

[CrossRef]

L. Denis, D. A. Lorenz, and D. Trede, “Greedy solution of ill-posed problems: error bounds and exact inversion,” Inverse Probl. 25, 115017 (2009).

[CrossRef]

E. Malkiel, J. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657–3666 (2003).

[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer,” J. Fluid Mech. 633, 17–60 (2009).

[CrossRef]

J. Reveillon and F. Demoulin, “Effects of the preferential segregation of droplets on evaporation and turbulent mixing,” J. Fluid Mech. 583, 273–302 (2007).

[CrossRef]

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis—a reassessment,” J. Mod. Opt. 23, 685–700 (1976).

[CrossRef]

M. Ellero, M. Kröger, and S. Hess, “Viscoelastic flows studied by smoothed particle dynamics,” J. Non-Newton. Fluid Mech. 105, 35–51 (2002).

[CrossRef]

S. Sotthivirat and J. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am. A 21, 737–750 (2004).

[CrossRef]

X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography” J. Opt. Soc. Am. A 27, 1630–1637 (2010).

[CrossRef]

F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in particle digital holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A 24, 3708–3716 (2007).

[CrossRef]

F. Soulez, L. Denis, C. Fournier, É. Thiébaut, and C. Goepfert, “Inverse-problem approach for particle digital holography: accurate location based on local optimization,” J. Opt. Soc. Am. A 24, 1164–1171 (2007).

[CrossRef]

C. Fournier, L. Denis, and T. Fournel, “On the single point resolution of on-axis digital holography,” J. Opt. Soc. Am. A 27, 1856–1862 (2010).

[CrossRef]

M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three-dimensional–two-components particle tracking velocimetry,” Meas. Sci. Technol. 15, 699–705 (2004).

[CrossRef]

J. Gire, L. Denis, C. Fournier, E. Thiébaut, F. Soulez, and C. Ducottet, “Digital holography of particles: benefits of the a ‘inverse problem’ approach,” Meas. Sci. Technol. 19, 074005 (2008).

[CrossRef]

Y. Choi and S. Lee, “Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow,” Microfluid. Nanofluid. 9, 819–829 (2010).

[CrossRef]

D. Chareyron, J. L. Marié, C. Fournier, J. Gire, N. Grosjean, L. Denis, M. Lance, and L. Mees, “Testing an in-line digital holography inverse method for the lagrangian tracking of evaporating droplets in homogeneous nearly isotropic turbulence,” New J. Phys. 14, 043039 (2012).

[CrossRef]

H. Royer, “An application of high-speed microholography: the metrology of fogs,” Nouv. Rev. Opt. 5, 87–93 (1974).

[CrossRef]

F. CH. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18, 13563–13573 (2010).

[CrossRef]

S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Characterizing and tracking single colloidal particles with video holographic microscopy,” Opt. Express 15, 18275–18282 (2007).

[CrossRef]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).

[CrossRef]

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).

[CrossRef]

Murata, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567–574 (2000).

[CrossRef]

C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000).

[CrossRef]

M. Marim, M. Atlan, E. Angelini, and J. Olivo-Marin, “Compressed sensing with off-axis frequency-shifting holography,” Opt. Lett. 35, 871–873 (2010).

[CrossRef]

L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009).

[CrossRef]

L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett. 18, 846–848 (1993).

[CrossRef]

C. Fournier, L. Denis, E. Thiebaut, T. Fournel, and M. Seifi, “Inverse problem approaches for digital hologram reconstruction,” Proc. SPIE 8043, 80430S (2011).

[CrossRef]

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods, 1st ed. (Wiley-VCH, 2005).

S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory, 1st ed. (Prentice Hall, 1993).

http://www.fftw.org/ (visited on 10 July 2012).