Abstract

We evaluated the impact of the Stiles–Crawford effect (SCE) on visual performance following laser in situ keratomileusis procedures. This prospective study included 71 eyes of 36 consecutive myopic patients (mean age, 20.94±3.69 years). Ocular aberrations and contrast sensitivity were measured one month after surgery. The SCE was modeled optically as a filter placed in front of the eye, and then the modulation transfer functions (MTFs) and the predicted log contrast sensitivity were calculated from the measured wavefront aberration data. Then the visual Strehl ratio for MTF (VSMTF) was calculated. The results indicated that the computed MTF with SCE were superior to that without SCE. The predicted contrast sensitivity functions were underestimated about 20% when the SCE was not taken into account for the scotopic pupil. Moreover, the measured contrast sensitivity was not significantly different from that with SCE at 6, 12, and 18  cycles/deg spatial frequencies. According to the obtained VSMTF ratio, optical qualities of all eyes were underestimated with the range from 5% (0.02 log unit) to 65% (0.22 log unit) without SCE, and the average value is 41% (0.15 log unit). When only taking higher-order aberrations into account, the predicted postoperative visual performance would be different from the real values. The evaluation of postoperative visual performance from wavefront aberrations should consider not only the compensation relationship between defocus and spherical aberration but also the SCE.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chinese Med. J. 120, 269–273 (2007).
  2. M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001).
    [CrossRef]
  3. K. Pesudovs, “Wavefront aberration outcomes of LASIK for high myopia and high hyperopia,” J. Refract. Surg. 21, S508–512 (2005).
  4. N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, “Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007).
    [CrossRef]
  5. C. Villa, R. Gutierrez, J. R. Jimenez, and J. M. Gonzalez-Meijome, “Night vision disturbances after successful LASIK surgery,” Brit. J. Ophthalmol. 91, 1031–1037 (2007).
    [CrossRef]
  6. K. M. Tuan, D. Chernyak, and S. T. Feldman, “Predicting patients’ night vision complaints with wavefront technology,” Am. J. Ophthalmol. 141, 1–6.e2 (2006).
    [CrossRef]
  7. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).
  8. R. A. Applegate, H. C. Howland, R. P. Sharp, A. J. Cottingham, and R. W. Yee, “Corneal aberrations and visual performance after radial keratotomy,” J. Cataract Refract. Surg. 14, 397–407 (1998).
  9. D. Wigledowska-Promienska and I. Zawojska, “Changes in higher order aberrations after wavefront-guided PRK for correction of low to moderate myopia and myopic astigmatism: two-year follow-up,” Eur. J. Ophthalmol. 17, 507–514 (2007).
  10. S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
    [CrossRef]
  11. R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
    [CrossRef]
  12. D. A. Atchison, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15, 2545–2551 (1998).
    [CrossRef]
  13. D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance with decentered pupils,” J. Opt. Soc. Am. A 18, 1201–1211 (2001).
    [CrossRef]
  14. D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles–Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19, 1073–1083 (2002).
    [CrossRef]
  15. D. A. Atchison and D. H. Scott, “Contrast sensitivity and the Stiles–Crawford effect,” Vis. Res. 42, 1559–1569 (2002).
    [CrossRef]
  16. Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg. 19, S270–274 (2003).
  17. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329–351 (2004).
    [CrossRef]
  18. X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vision 4, 310–321 (2004).
    [CrossRef]
  19. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
    [CrossRef]
  20. R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29, 1487–1495(2003).
    [CrossRef]
  21. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  22. L.-h. Fang, X. He, and S. Li, “Study on the counterbalanced relationship between defocus and spherical aberration based on optical quality metrics of human eyes,” Acta Photon. Sin. 39, 110–115 (2010).
    [CrossRef]
  23. Organization-for-Standardization-International-(ISO), “Ophthalmic Optics and Instruments—Reporting Aberrations of the Human Eye” (ISO, 2008).
  24. J. P. Carroll, “Apodization model of the Stiles–Crawford effect,” J. Opt. Soc. Am. 70, 1155–1156 (1980).
    [CrossRef]
  25. X. Zhang, M. Ye, A. Bradley, and L. Thibos, “Apodization by the Stiles–Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16, 812–820(1999).
    [CrossRef]
  26. G. N. Pomerance and D. W. Evans, “Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy,” Invest. Ophthalmol. Vis. Sci. 35, 3357–3361 (1994).
  27. F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
  28. J. J. Perez-Santonja, H. F. Sakla, and J. L. Alio, “Contrast sensitivity after laser in situ keratomileusis,” J. Cataract Refract. Surg. 24, 183–189 (1998).
  29. J. T. Holladay, D. R. Dudeja, and J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
    [CrossRef]
  30. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]
  31. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 620–628 (2002).
    [CrossRef]
  32. R. Montes-Mico and W. N. Charman, “Choice of spatial frequency for contrast sensitivity evaluation after corneal refractive surgery,” J. Refract. Surg. 17, 646–651 (2001).
  33. Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).
  34. S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–601 (2001).
  35. T. Hiraoka, C. Okamoto, Y. Ishii, T. Kakita, and T. Oshika, “Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology,” Invest. Ophthalmol. Vis. Sci. 48, 550–556 (2007).
    [CrossRef]
  36. B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22, 2318–2328 (2005).
    [CrossRef]
  37. B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24, 597–607 (2007).
    [CrossRef]
  38. M. Kilintari, A. Pallikaris, N. Tsiklis, and H. S. Ginis, “Evaluation of image quality metrics for the prediction of subjective best focus,” Optom. Vis. Sci. (2010).
    [CrossRef]
  39. D. A. Atchison, S. Marcos, and D. H. Scott, “The influence of the Stiles–Crawford peak location on visual performance,” Vis. Res. 43, 659–668 (2003).
    [CrossRef]

2010 (2)

L.-h. Fang, X. He, and S. Li, “Study on the counterbalanced relationship between defocus and spherical aberration based on optical quality metrics of human eyes,” Acta Photon. Sin. 39, 110–115 (2010).
[CrossRef]

M. Kilintari, A. Pallikaris, N. Tsiklis, and H. S. Ginis, “Evaluation of image quality metrics for the prediction of subjective best focus,” Optom. Vis. Sci. (2010).
[CrossRef]

2009 (1)

Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).

2007 (6)

T. Hiraoka, C. Okamoto, Y. Ishii, T. Kakita, and T. Oshika, “Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology,” Invest. Ophthalmol. Vis. Sci. 48, 550–556 (2007).
[CrossRef]

N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, “Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007).
[CrossRef]

C. Villa, R. Gutierrez, J. R. Jimenez, and J. M. Gonzalez-Meijome, “Night vision disturbances after successful LASIK surgery,” Brit. J. Ophthalmol. 91, 1031–1037 (2007).
[CrossRef]

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chinese Med. J. 120, 269–273 (2007).

D. Wigledowska-Promienska and I. Zawojska, “Changes in higher order aberrations after wavefront-guided PRK for correction of low to moderate myopia and myopic astigmatism: two-year follow-up,” Eur. J. Ophthalmol. 17, 507–514 (2007).

B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24, 597–607 (2007).
[CrossRef]

2006 (1)

K. M. Tuan, D. Chernyak, and S. T. Feldman, “Predicting patients’ night vision complaints with wavefront technology,” Am. J. Ophthalmol. 141, 1–6.e2 (2006).
[CrossRef]

2005 (2)

K. Pesudovs, “Wavefront aberration outcomes of LASIK for high myopia and high hyperopia,” J. Refract. Surg. 21, S508–512 (2005).

B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22, 2318–2328 (2005).
[CrossRef]

2004 (3)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329–351 (2004).
[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vision 4, 310–321 (2004).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

2003 (3)

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29, 1487–1495(2003).
[CrossRef]

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg. 19, S270–274 (2003).

D. A. Atchison, S. Marcos, and D. H. Scott, “The influence of the Stiles–Crawford peak location on visual performance,” Vis. Res. 43, 659–668 (2003).
[CrossRef]

2002 (4)

2001 (5)

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001).
[CrossRef]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).

D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance with decentered pupils,” J. Opt. Soc. Am. A 18, 1201–1211 (2001).
[CrossRef]

R. Montes-Mico and W. N. Charman, “Choice of spatial frequency for contrast sensitivity evaluation after corneal refractive surgery,” J. Refract. Surg. 17, 646–651 (2001).

S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–601 (2001).

1999 (3)

J. T. Holladay, D. R. Dudeja, and J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef]

X. Zhang, M. Ye, A. Bradley, and L. Thibos, “Apodization by the Stiles–Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16, 812–820(1999).
[CrossRef]

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

1998 (3)

D. A. Atchison, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15, 2545–2551 (1998).
[CrossRef]

J. J. Perez-Santonja, H. F. Sakla, and J. L. Alio, “Contrast sensitivity after laser in situ keratomileusis,” J. Cataract Refract. Surg. 24, 183–189 (1998).

R. A. Applegate, H. C. Howland, R. P. Sharp, A. J. Cottingham, and R. W. Yee, “Corneal aberrations and visual performance after radial keratotomy,” J. Cataract Refract. Surg. 14, 397–407 (1998).

1994 (2)

G. N. Pomerance and D. W. Evans, “Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy,” Invest. Ophthalmol. Vis. Sci. 35, 3357–3361 (1994).

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

1993 (1)

1980 (1)

1965 (1)

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).

Alio, J. L.

J. J. Perez-Santonja, H. F. Sakla, and J. L. Alio, “Contrast sensitivity after laser in situ keratomileusis,” J. Cataract Refract. Surg. 24, 183–189 (1998).

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329–351 (2004).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29, 1487–1495(2003).
[CrossRef]

R. A. Applegate, H. C. Howland, R. P. Sharp, A. J. Cottingham, and R. W. Yee, “Corneal aberrations and visual performance after radial keratotomy,” J. Cataract Refract. Surg. 14, 397–407 (1998).

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
[CrossRef]

Artal, P.

Atchison, D. A.

Barbero, S.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).

Bille, J. F.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329–351 (2004).
[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vision 4, 310–321 (2004).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

X. Zhang, M. Ye, A. Bradley, and L. Thibos, “Apodization by the Stiles–Crawford effect moderates the visual impact of retinal image defocus,” J. Opt. Soc. Am. A 16, 812–820(1999).
[CrossRef]

Burns, S. A.

Campbell, F. W.

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).

Carroll, J. P.

Chang, J.

J. T. Holladay, D. R. Dudeja, and J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef]

Charman, W. N.

R. Montes-Mico and W. N. Charman, “Choice of spatial frequency for contrast sensitivity evaluation after corneal refractive surgery,” J. Refract. Surg. 17, 646–651 (2001).

Cheng, X.

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vision 4, 310–321 (2004).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Chernyak, D.

K. M. Tuan, D. Chernyak, and S. T. Feldman, “Predicting patients’ night vision complaints with wavefront technology,” Am. J. Ophthalmol. 141, 1–6.e2 (2006).
[CrossRef]

Cottingham, A. J.

R. A. Applegate, H. C. Howland, R. P. Sharp, A. J. Cottingham, and R. W. Yee, “Corneal aberrations and visual performance after radial keratotomy,” J. Cataract Refract. Surg. 14, 397–407 (1998).

Cox, I. G.

Dudeja, D. R.

J. T. Holladay, D. R. Dudeja, and J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef]

Evans, D. W.

G. N. Pomerance and D. W. Evans, “Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy,” Invest. Ophthalmol. Vis. Sci. 35, 3357–3361 (1994).

Fang, L.-h.

L.-h. Fang, X. He, and S. Li, “Study on the counterbalanced relationship between defocus and spherical aberration based on optical quality metrics of human eyes,” Acta Photon. Sin. 39, 110–115 (2010).
[CrossRef]

Feldman, S. T.

K. M. Tuan, D. Chernyak, and S. T. Feldman, “Predicting patients’ night vision complaints with wavefront technology,” Am. J. Ophthalmol. 141, 1–6.e2 (2006).
[CrossRef]

Ginis, H. S.

M. Kilintari, A. Pallikaris, N. Tsiklis, and H. S. Ginis, “Evaluation of image quality metrics for the prediction of subjective best focus,” Optom. Vis. Sci. (2010).
[CrossRef]

Goelz, S.

Gonzalez-Meijome, J. M.

C. Villa, R. Gutierrez, J. R. Jimenez, and J. M. Gonzalez-Meijome, “Night vision disturbances after successful LASIK surgery,” Brit. J. Ophthalmol. 91, 1031–1037 (2007).
[CrossRef]

Green, D. G.

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).

Grimm, B.

Guirao, A.

Gutierrez, R.

C. Villa, R. Gutierrez, J. R. Jimenez, and J. M. Gonzalez-Meijome, “Night vision disturbances after successful LASIK surgery,” Brit. J. Ophthalmol. 91, 1031–1037 (2007).
[CrossRef]

He, J. C.

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chinese Med. J. 120, 269–273 (2007).

He, X.

L.-h. Fang, X. He, and S. Li, “Study on the counterbalanced relationship between defocus and spherical aberration based on optical quality metrics of human eyes,” Acta Photon. Sin. 39, 110–115 (2010).
[CrossRef]

Hiraoka, T.

T. Hiraoka, C. Okamoto, Y. Ishii, T. Kakita, and T. Oshika, “Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology,” Invest. Ophthalmol. Vis. Sci. 48, 550–556 (2007).
[CrossRef]

Holladay, J. T.

J. T. Holladay, D. R. Dudeja, and J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329–351 (2004).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Hou, J.

Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).

Howland, H. C.

R. A. Applegate, H. C. Howland, R. P. Sharp, A. J. Cottingham, and R. W. Yee, “Corneal aberrations and visual performance after radial keratotomy,” J. Cataract Refract. Surg. 14, 397–407 (1998).

Iglesias, I.

Ishii, Y.

T. Hiraoka, C. Okamoto, Y. Ishii, T. Kakita, and T. Oshika, “Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology,” Invest. Ophthalmol. Vis. Sci. 48, 550–556 (2007).
[CrossRef]

Jimenez, J. R.

C. Villa, R. Gutierrez, J. R. Jimenez, and J. M. Gonzalez-Meijome, “Night vision disturbances after successful LASIK surgery,” Brit. J. Ophthalmol. 91, 1031–1037 (2007).
[CrossRef]

Jin, Y.

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chinese Med. J. 120, 269–273 (2007).

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg. 19, S270–274 (2003).

Joblin, A.

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001).
[CrossRef]

Kakita, T.

T. Hiraoka, C. Okamoto, Y. Ishii, T. Kakita, and T. Oshika, “Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology,” Invest. Ophthalmol. Vis. Sci. 48, 550–556 (2007).
[CrossRef]

Kilintari, M.

M. Kilintari, A. Pallikaris, N. Tsiklis, and H. S. Ginis, “Evaluation of image quality metrics for the prediction of subjective best focus,” Optom. Vis. Sci. (2010).
[CrossRef]

Lakshminarayanan, V.

Li, S.

L.-h. Fang, X. He, and S. Li, “Study on the counterbalanced relationship between defocus and spherical aberration based on optical quality metrics of human eyes,” Acta Photon. Sin. 39, 110–115 (2010).
[CrossRef]

Liang, J.

Llorente, L.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).

Lloves, J. M.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).

Marcos, S.

D. A. Atchison, S. Marcos, and D. H. Scott, “The influence of the Stiles–Crawford peak location on visual performance,” Vis. Res. 43, 659–668 (2003).
[CrossRef]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).

S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–601 (2001).

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

Marsack, J. D.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29, 1487–1495(2003).
[CrossRef]

Mierdel, P.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001).
[CrossRef]

Miyata, K.

N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, “Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007).
[CrossRef]

Montes-Mico, R.

R. Montes-Mico and W. N. Charman, “Choice of spatial frequency for contrast sensitivity evaluation after corneal refractive surgery,” J. Refract. Surg. 17, 646–651 (2001).

Moreno-Barriuso, E.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).

Mrochen, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001).
[CrossRef]

Navarro, R.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).

Niu, Y.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg. 19, S270–274 (2003).

Okamoto, C.

T. Hiraoka, C. Okamoto, Y. Ishii, T. Kakita, and T. Oshika, “Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology,” Invest. Ophthalmol. Vis. Sci. 48, 550–556 (2007).
[CrossRef]

Oshika, T.

T. Hiraoka, C. Okamoto, Y. Ishii, T. Kakita, and T. Oshika, “Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology,” Invest. Ophthalmol. Vis. Sci. 48, 550–556 (2007).
[CrossRef]

N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, “Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007).
[CrossRef]

Pallikaris, A.

M. Kilintari, A. Pallikaris, N. Tsiklis, and H. S. Ginis, “Evaluation of image quality metrics for the prediction of subjective best focus,” Optom. Vis. Sci. (2010).
[CrossRef]

Perez-Santonja, J. J.

J. J. Perez-Santonja, H. F. Sakla, and J. L. Alio, “Contrast sensitivity after laser in situ keratomileusis,” J. Cataract Refract. Surg. 24, 183–189 (1998).

Pesudovs, K.

K. Pesudovs, “Wavefront aberration outcomes of LASIK for high myopia and high hyperopia,” J. Refract. Surg. 21, S508–512 (2005).

Pomerance, G. N.

G. N. Pomerance and D. W. Evans, “Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy,” Invest. Ophthalmol. Vis. Sci. 35, 3357–3361 (1994).

Porter, J.

Ramos, R.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29, 1487–1495(2003).
[CrossRef]

Rao, F.

Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).

Sakata, N.

N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, “Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007).
[CrossRef]

Sakla, H. F.

J. J. Perez-Santonja, H. F. Sakla, and J. L. Alio, “Contrast sensitivity after laser in situ keratomileusis,” J. Cataract Refract. Surg. 24, 183–189 (1998).

Sarver, E. J.

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29, 1487–1495(2003).
[CrossRef]

Scott, D. H.

D. A. Atchison, S. Marcos, and D. H. Scott, “The influence of the Stiles–Crawford peak location on visual performance,” Vis. Res. 43, 659–668 (2003).
[CrossRef]

D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles–Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19, 1073–1083 (2002).
[CrossRef]

D. A. Atchison and D. H. Scott, “Contrast sensitivity and the Stiles–Crawford effect,” Vis. Res. 42, 1559–1569 (2002).
[CrossRef]

D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance with decentered pupils,” J. Opt. Soc. Am. A 18, 1201–1211 (2001).
[CrossRef]

Seiler, T.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001).
[CrossRef]

Sharp, R. P.

R. A. Applegate, H. C. Howland, R. P. Sharp, A. J. Cottingham, and R. W. Yee, “Corneal aberrations and visual performance after radial keratotomy,” J. Cataract Refract. Surg. 14, 397–407 (1998).

Smith, G.

Strang, N. C.

Thibos, L.

Thibos, L. N.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vision 4, 310–321 (2004).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329–351 (2004).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Tokunaga, T.

N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, “Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007).
[CrossRef]

Tsiklis, N.

M. Kilintari, A. Pallikaris, N. Tsiklis, and H. S. Ginis, “Evaluation of image quality metrics for the prediction of subjective best focus,” Optom. Vis. Sci. (2010).
[CrossRef]

Tuan, K. M.

K. M. Tuan, D. Chernyak, and S. T. Feldman, “Predicting patients’ night vision complaints with wavefront technology,” Am. J. Ophthalmol. 141, 1–6.e2 (2006).
[CrossRef]

Villa, C.

C. Villa, R. Gutierrez, J. R. Jimenez, and J. M. Gonzalez-Meijome, “Night vision disturbances after successful LASIK surgery,” Brit. J. Ophthalmol. 91, 1031–1037 (2007).
[CrossRef]

Vohnsen, B.

Wang, Y.

Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chinese Med. J. 120, 269–273 (2007).

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg. 19, S270–274 (2003).

Wang, Z. Q.

Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).

Wigledowska-Promienska, D.

D. Wigledowska-Promienska and I. Zawojska, “Changes in higher order aberrations after wavefront-guided PRK for correction of low to moderate myopia and myopic astigmatism: two-year follow-up,” Eur. J. Ophthalmol. 17, 507–514 (2007).

Williams, D. R.

Yang, X. Y.

Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).

Ye, M.

Yee, R. W.

R. A. Applegate, H. C. Howland, R. P. Sharp, A. J. Cottingham, and R. W. Yee, “Corneal aberrations and visual performance after radial keratotomy,” J. Cataract Refract. Surg. 14, 397–407 (1998).

Zawojska, I.

D. Wigledowska-Promienska and I. Zawojska, “Changes in higher order aberrations after wavefront-guided PRK for correction of low to moderate myopia and myopic astigmatism: two-year follow-up,” Eur. J. Ophthalmol. 17, 507–514 (2007).

Zhang, X.

Zhao, K.

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg. 19, S270–274 (2003).

Zhao, K. X.

Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chinese Med. J. 120, 269–273 (2007).

Zuo, T.

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chinese Med. J. 120, 269–273 (2007).

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg. 19, S270–274 (2003).

Acta Photon. Sin. (1)

L.-h. Fang, X. He, and S. Li, “Study on the counterbalanced relationship between defocus and spherical aberration based on optical quality metrics of human eyes,” Acta Photon. Sin. 39, 110–115 (2010).
[CrossRef]

Am. J. Ophthalmol. (1)

K. M. Tuan, D. Chernyak, and S. T. Feldman, “Predicting patients’ night vision complaints with wavefront technology,” Am. J. Ophthalmol. 141, 1–6.e2 (2006).
[CrossRef]

Brit. J. Ophthalmol. (1)

C. Villa, R. Gutierrez, J. R. Jimenez, and J. M. Gonzalez-Meijome, “Night vision disturbances after successful LASIK surgery,” Brit. J. Ophthalmol. 91, 1031–1037 (2007).
[CrossRef]

Chinese Med. J. (1)

Y. Wang, K. X. Zhao, J. C. He, Y. Jin, and T. Zuo, “Ocular higher-order aberrations features analysis after corneal refractive surgery,” Chinese Med. J. 120, 269–273 (2007).

Eur. J. Ophthalmol. (1)

D. Wigledowska-Promienska and I. Zawojska, “Changes in higher order aberrations after wavefront-guided PRK for correction of low to moderate myopia and myopic astigmatism: two-year follow-up,” Eur. J. Ophthalmol. 17, 507–514 (2007).

Invest. Ophthalmol. Vis. Sci. (2)

G. N. Pomerance and D. W. Evans, “Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy,” Invest. Ophthalmol. Vis. Sci. 35, 3357–3361 (1994).

T. Hiraoka, C. Okamoto, Y. Ishii, T. Kakita, and T. Oshika, “Contrast sensitivity function and ocular higher-order aberrations following overnight orthokeratology,” Invest. Ophthalmol. Vis. Sci. 48, 550–556 (2007).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (1)

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Investig. Ophthalmol. Vis. Sci. 42, 1396–1403 (2001).

J. Cataract Refract. Surg. (5)

R. A. Applegate, H. C. Howland, R. P. Sharp, A. J. Cottingham, and R. W. Yee, “Corneal aberrations and visual performance after radial keratotomy,” J. Cataract Refract. Surg. 14, 397–407 (1998).

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, “Increased higher-order optical aberrations after laser refractive surgery: a problem of subclinical decentration,” J. Cataract Refract. Surg. 27, 362–369 (2001).
[CrossRef]

R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, “Interaction between aberrations to improve or reduce visual performance,” J. Cataract Refract. Surg. 29, 1487–1495(2003).
[CrossRef]

J. J. Perez-Santonja, H. F. Sakla, and J. L. Alio, “Contrast sensitivity after laser in situ keratomileusis,” J. Cataract Refract. Surg. 24, 183–189 (1998).

J. T. Holladay, D. R. Dudeja, and J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing, and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (10)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A (10)

D. A. Atchison, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance,” J. Opt. Soc. Am. A 15, 2545–2551 (1998).
[CrossRef]

R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles–Crawford functions: normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 1611–1623 (1993).
[CrossRef]

D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, “Influence of Stiles–Crawford effect apodization on spatial visual performance with decentered pupils,” J. Opt. Soc. Am. A 18, 1201–1211 (2001).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 620–628 (2002).
[CrossRef]

D. A. Atchison, D. H. Scott, N. C. Strang, and P. Artal, “Influence of Stiles–Crawford apodization on visual acuity,” J. Opt. Soc. Am. A 19, 1073–1083 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

B. Vohnsen, I. Iglesias, and P. Artal, “Guided light and diffraction model of human-eye photoreceptors,” J. Opt. Soc. Am. A 22, 2318–2328 (2005).
[CrossRef]

B. Vohnsen, “Photoreceptor waveguides and effective retinal image quality,” J. Opt. Soc. Am. A 24, 597–607 (2007).
[CrossRef]

J. Physiol. (1)

F. W. Campbell and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).

J. Refract. Surg. (4)

R. Montes-Mico and W. N. Charman, “Choice of spatial frequency for contrast sensitivity evaluation after corneal refractive surgery,” J. Refract. Surg. 17, 646–651 (2001).

Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, “Changes of higher order aberration with various pupil sizes in the myopic eye,” J. Refract. Surg. 19, S270–274 (2003).

K. Pesudovs, “Wavefront aberration outcomes of LASIK for high myopia and high hyperopia,” J. Refract. Surg. 21, S508–512 (2005).

S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–601 (2001).

J. Vision (3)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329–351 (2004).
[CrossRef]

X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vision 4, 310–321 (2004).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

Jpn. J. Ophthalmol. (1)

N. Sakata, T. Tokunaga, K. Miyata, and T. Oshika, “Changes in contrast sensitivity function and ocular higher order aberration by conventional myopic photorefractive keratectomy,” Jpn. J. Ophthalmol. 51, 347–352 (2007).
[CrossRef]

Optom. Vis. Sci. (1)

M. Kilintari, A. Pallikaris, N. Tsiklis, and H. S. Ginis, “Evaluation of image quality metrics for the prediction of subjective best focus,” Optom. Vis. Sci. (2010).
[CrossRef]

Vis. Res. (2)

D. A. Atchison, S. Marcos, and D. H. Scott, “The influence of the Stiles–Crawford peak location on visual performance,” Vis. Res. 43, 659–668 (2003).
[CrossRef]

D. A. Atchison and D. H. Scott, “Contrast sensitivity and the Stiles–Crawford effect,” Vis. Res. 42, 1559–1569 (2002).
[CrossRef]

Zhonghua Yan Ke Za Zhi (1)

Y. Wang, K. X. Zhao, F. Rao, X. Y. Yang, J. Hou, and Z. Q. Wang, “Visual quality evaluation on changes of MTF and wavefront aberration after laser in situ keratomileusis,” Zhonghua Yan Ke Za Zhi 45, 580–586 (2009).

Other (1)

Organization-for-Standardization-International-(ISO), “Ophthalmic Optics and Instruments—Reporting Aberrations of the Human Eye” (ISO, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics