Abstract

We describe a method for image transmission through an aberrating medium by means of a modified configuration for conventional ghost diffraction with classical incoherent beams. On the basis of optical coherence theory, we show that the effects of phase disturbances, be they deterministic or random, can be canceled out in our method and the squared modulus of the Fourier transform of the object is obtained in terms of intensity-correlation measurements. From the measurement data, the object can be reconstructed using standard phase retrieval algorithms.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Image transmission through a turbulent medium using a point reflector and four-wave mixing in BSO crystal

Osamu Ikeda, Tohru Suzuki, and Takuso Sato
Appl. Opt. 22(14) 2192-2195 (1983)

Ghost imaging through turbulent atmosphere

Jing Cheng
Opt. Express 17(10) 7916-7921 (2009)

Third-order lensless ghost diffraction with classical fully incoherent light

Bin Cao and Chun-xi Zhang
Opt. Lett. 35(12) 2091-2093 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription