S. K. Biswas, R. Kanhirodan, R. M. Vasu, and D. Roy, “A pseudo-dynamical systems approach based on a quadratic approximation of update equations for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 1784–1795 (2011).

[CrossRef]

T. Raveendran, S. Gupta, R. M. Vasu, and D. Roy, “Pseudo-time particle filtering for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 2070–2081 (2011).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547 (2011).

[CrossRef]

S. Schlenkrich and A. Walther, “Global convergence of quasi-Newton methods based on adjoint Broyden updates,” Appl. Num. Math. 59, 1120–1136 (2009).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. A 465, 1561 (2009).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]

A. P. Gibson, J. Hebden, and Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

Y. Xu, N. Iftima, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, L. Baron, and J. Eggert, “Three dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).

[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

B. W. Pogue, S. Geimer, T. O. McBride, S. D. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[CrossRef]

D. Roy, “A new numeric-analytical principle for nonlinear deterministic and stochastic dynamical systems,” Proc. R. Soc. Lond. A 457, 539–566 (2001).

[CrossRef]

D. Roy, “Explorations of the phase space linearization method for deterministic and stochastic non-linear dynamical systems,” Nonlin. Dynam. 23, 225–258 (2000).

[CrossRef]

H. B. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]

S. Arridge and J. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–854 (1997).

[CrossRef]

C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Math. Comp. 19, 577–593 (1965).

[CrossRef]

A. P. Gibson, J. Hebden, and Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. A 465, 1561 (2009).

[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, L. Baron, and J. Eggert, “Three dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).

[CrossRef]

S. K. Biswas, R. Kanhirodan, R. M. Vasu, and D. Roy, “A pseudo-dynamical systems approach based on a quadratic approximation of update equations for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 1784–1795 (2011).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547 (2011).

[CrossRef]

Y. Xu, N. Iftimia, L. L. Key, and M. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

Y. Xu, N. Iftima, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Math. Comp. 19, 577–593 (1965).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, L. Baron, and J. Eggert, “Three dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

A. P. Gibson, J. Hebden, and Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]

A. P. Gibson, J. Hebden, and Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

S. Arridge and J. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–854 (1997).

[CrossRef]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

Y. Xu, N. Iftima, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, L. Baron, and J. Eggert, “Three dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).

[CrossRef]

H. B. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000).

[CrossRef]

Y. Xu, N. Iftimia, L. L. Key, and M. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

Y. Xu, N. Iftima, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, L. Baron, and J. Eggert, “Three dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).

[CrossRef]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]

Y. Xu, N. Iftima, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

Y. Xu, N. Iftimia, L. L. Key, and M. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).

B. W. Pogue, S. Geimer, T. O. McBride, S. D. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).

B. W. Pogue, S. Geimer, T. O. McBride, S. D. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).

B. W. Pogue, S. Geimer, T. O. McBride, S. D. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

B. W. Pogue, S. Geimer, T. O. McBride, S. D. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547 (2011).

[CrossRef]

S. K. Biswas, R. Kanhirodan, R. M. Vasu, and D. Roy, “A pseudo-dynamical systems approach based on a quadratic approximation of update equations for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 1784–1795 (2011).

[CrossRef]

T. Raveendran, S. Gupta, R. M. Vasu, and D. Roy, “Pseudo-time particle filtering for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 2070–2081 (2011).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. A 465, 1561 (2009).

[CrossRef]

D. Roy, “A new numeric-analytical principle for nonlinear deterministic and stochastic dynamical systems,” Proc. R. Soc. Lond. A 457, 539–566 (2001).

[CrossRef]

D. Roy, “Explorations of the phase space linearization method for deterministic and stochastic non-linear dynamical systems,” Nonlin. Dynam. 23, 225–258 (2000).

[CrossRef]

S. Schlenkrich and A. Walther, “Global convergence of quasi-Newton methods based on adjoint Broyden updates,” Appl. Num. Math. 59, 1120–1136 (2009).

[CrossRef]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

M. Schweiger and S. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

S. K. Biswas, R. Kanhirodan, R. M. Vasu, and D. Roy, “A pseudo-dynamical systems approach based on a quadratic approximation of update equations for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 1784–1795 (2011).

[CrossRef]

T. Raveendran, S. Gupta, R. M. Vasu, and D. Roy, “Pseudo-time particle filtering for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 2070–2081 (2011).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547 (2011).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. A 465, 1561 (2009).

[CrossRef]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]

S. Schlenkrich and A. Walther, “Global convergence of quasi-Newton methods based on adjoint Broyden updates,” Appl. Num. Math. 59, 1120–1136 (2009).

[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).

Y. Xu, N. Iftima, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, L. Baron, and J. Eggert, “Three dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).

[CrossRef]

H. B. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data,” Opt. Express 7, 204–209 (2000).

[CrossRef]

Y. Xu, N. Iftimia, L. L. Key, and M. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

S. Schlenkrich and A. Walther, “Global convergence of quasi-Newton methods based on adjoint Broyden updates,” Appl. Num. Math. 59, 1120–1136 (2009).

[CrossRef]

S. Fantini, M. A. Franceschini, B. F. Joshua, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light emitting diode based technique,” Appl. Opt. 33, 5204–5213 (1994).

[CrossRef]

M. Schweiger and S. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt. 37, 7419–7428 (1998).

[CrossRef]

B. W. Pogue, S. Geimer, T. O. McBride, S. D. Jiang, U. L. Osterberg, and K. D. Paulsen, “Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction,” Appl. Opt. 40, 588–600 (2001).

[CrossRef]

M. E. Kilmer, E. L. Miller, A. Barbaro, and D. A. Boas, “3D shape-based imaging for diffuse optical tomography,” Appl. Opt. 42, 3129–3144 (2003).

[CrossRef]

H. Jiang, Y. Xu, N. Iftimia, L. Baron, and J. Eggert, “Three dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271 (1999).

[CrossRef]

Y. Xu, N. Iftima, H. Jiang, L. L. Key, and M. B. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

Y. Xu, N. Iftimia, L. L. Key, and M. Bolster, “Three-dimensional diffuse optical tomography of bones and joints,” J. Biomed. Opt. 7, 88–92 (2002).

[CrossRef]

M. J. Holboke, B. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000).

[CrossRef]

S. K. Biswas, R. Kanhirodan, R. M. Vasu, and D. Roy, “A pseudo-dynamical systems approach based on a quadratic approximation of update equations for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 1784–1795 (2011).

[CrossRef]

T. Raveendran, S. Gupta, R. M. Vasu, and D. Roy, “Pseudo-time particle filtering for diffuse optical tomography,” J. Opt. Soc. Am. A 28, 2070–2081 (2011).

[CrossRef]

C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Math. Comp. 19, 577–593 (1965).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547 (2011).

[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-matrix structured regularization provides optimal generalized least-squares estimate in diffuse optical tomography,” Med. Phys. 34, 2085–2098 (2007).

[CrossRef]

D. Roy, “Explorations of the phase space linearization method for deterministic and stochastic non-linear dynamical systems,” Nonlin. Dynam. 23, 225–258 (2000).

[CrossRef]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]

E. M. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. Schmidt, D. T. Delpy, and S. R. Arridge, “Time resolved optical tomography of the human forearm,” Phys. Med. Biol. 46, 1117–1130 (2001).

[CrossRef]

S. Arridge and J. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–854 (1997).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]

A. P. Gibson, J. Hebden, and Arridge, “Recent advances in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. A 465, 1561 (2009).

[CrossRef]

D. Roy, “A new numeric-analytical principle for nonlinear deterministic and stochastic dynamical systems,” Proc. R. Soc. Lond. A 457, 539–566 (2001).

[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001).