G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

N. Wongkasem and A. Akyurtlu, “Light splitting effects in chiral metamaterials,” J. Opt. 12, 035101 (2010).

[CrossRef]

J. Dong, “Exotic characteristics of power propagation in the chiral nihility fiber,” Progress Electromagn. Res. 99, 163–178 (2009).

[CrossRef]

A. Semichaevsky, A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, “Novel BI-FDTD approach for the analysis of chiral cylinders and spheres,” IEEE Trans. Antennas Propag. 54, 925–932 (2006).

[CrossRef]

C. N. Chiu and C.-I. G. Hsu, “Scattering and shielding properties of a chiral-coated fiber-reinforced plastic composite cylinder,” IEEE Trans. Electromagn. Compat. 47, 123–130 (2005).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic resonances and Q factors of a chiral sphere,” IEEE Trans. Antennas Propag. 52, 213–219 (2004).

[CrossRef]

V. Demir, A. Elsherbeni, D. Worasawate, and E. Arvas, “A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or chiral sphere,” IEEE Trans. Antennas Propag. Mag. 46, 94–99 (2004).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body,” IEEE Trans. Antennas Propag. 51, 1077–1084 (2003).

[CrossRef]

M. Yokota, S. He, and T. Takenaka, “Scattering of a Hermite–Gaussian beam field by a chiral sphere,” J. Opt. Soc. Am A 18, 1681–1689 (2001).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary-shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

N. Wongkasem and A. Akyurtlu, “Light splitting effects in chiral metamaterials,” J. Opt. 12, 035101 (2010).

[CrossRef]

A. Semichaevsky, A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, “Novel BI-FDTD approach for the analysis of chiral cylinders and spheres,” IEEE Trans. Antennas Propag. 54, 925–932 (2006).

[CrossRef]

V. Demir, A. Elsherbeni, D. Worasawate, and E. Arvas, “A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or chiral sphere,” IEEE Trans. Antennas Propag. Mag. 46, 94–99 (2004).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic resonances and Q factors of a chiral sphere,” IEEE Trans. Antennas Propag. 52, 213–219 (2004).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body,” IEEE Trans. Antennas Propag. 51, 1077–1084 (2003).

[CrossRef]

A. Semichaevsky, A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, “Novel BI-FDTD approach for the analysis of chiral cylinders and spheres,” IEEE Trans. Antennas Propag. 54, 925–932 (2006).

[CrossRef]

C. N. Chiu and C.-I. G. Hsu, “Scattering and shielding properties of a chiral-coated fiber-reinforced plastic composite cylinder,” IEEE Trans. Electromagn. Compat. 47, 123–130 (2005).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

V. Demir, A. Elsherbeni, D. Worasawate, and E. Arvas, “A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or chiral sphere,” IEEE Trans. Antennas Propag. Mag. 46, 94–99 (2004).

[CrossRef]

J. Dong, “Exotic characteristics of power propagation in the chiral nihility fiber,” Progress Electromagn. Res. 99, 163–178 (2009).

[CrossRef]

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957), Chap. 4.

V. Demir, A. Elsherbeni, D. Worasawate, and E. Arvas, “A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or chiral sphere,” IEEE Trans. Antennas Propag. Mag. 46, 94–99 (2004).

[CrossRef]

J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary-shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

M. Yokota, S. He, and T. Takenaka, “Scattering of a Hermite–Gaussian beam field by a chiral sphere,” J. Opt. Soc. Am A 18, 1681–1689 (2001).

[CrossRef]

C. N. Chiu and C.-I. G. Hsu, “Scattering and shielding properties of a chiral-coated fiber-reinforced plastic composite cylinder,” IEEE Trans. Electromagn. Compat. 47, 123–130 (2005).

[CrossRef]

A. Semichaevsky, A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, “Novel BI-FDTD approach for the analysis of chiral cylinders and spheres,” IEEE Trans. Antennas Propag. 54, 925–932 (2006).

[CrossRef]

M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).

[CrossRef]

T. G. Mackay and A. Lakhtakia, “Simultaneous negative-and-positive-phase-velocity propagation in an isotropic chiral medium,” Microw. Opt. Technol. Lett. 49, 1245–1246 (2007).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

T. G. Mackay and A. Lakhtakia, “Simultaneous negative-and-positive-phase-velocity propagation in an isotropic chiral medium,” Microw. Opt. Technol. Lett. 49, 1245–1246 (2007).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic resonances and Q factors of a chiral sphere,” IEEE Trans. Antennas Propag. 52, 213–219 (2004).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body,” IEEE Trans. Antennas Propag. 51, 1077–1084 (2003).

[CrossRef]

M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

A. Semichaevsky, A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, “Novel BI-FDTD approach for the analysis of chiral cylinders and spheres,” IEEE Trans. Antennas Propag. 54, 925–932 (2006).

[CrossRef]

C. T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Int. Textbook Company, 1971).

M. Yokota, S. He, and T. Takenaka, “Scattering of a Hermite–Gaussian beam field by a chiral sphere,” J. Opt. Soc. Am A 18, 1681–1689 (2001).

[CrossRef]

A. Semichaevsky, A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, “Novel BI-FDTD approach for the analysis of chiral cylinders and spheres,” IEEE Trans. Antennas Propag. 54, 925–932 (2006).

[CrossRef]

N. Wongkasem and A. Akyurtlu, “Light splitting effects in chiral metamaterials,” J. Opt. 12, 035101 (2010).

[CrossRef]

V. Demir, A. Elsherbeni, D. Worasawate, and E. Arvas, “A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or chiral sphere,” IEEE Trans. Antennas Propag. Mag. 46, 94–99 (2004).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic resonances and Q factors of a chiral sphere,” IEEE Trans. Antennas Propag. 52, 213–219 (2004).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body,” IEEE Trans. Antennas Propag. 51, 1077–1084 (2003).

[CrossRef]

M. Yokota, S. He, and T. Takenaka, “Scattering of a Hermite–Gaussian beam field by a chiral sphere,” J. Opt. Soc. Am A 18, 1681–1689 (2001).

[CrossRef]

G. Gouesbet, “Interaction between an infinite cylinder and an arbitrary-shaped beam,” Appl. Opt. 36, 4292–4304 (1997).

[CrossRef]

L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, numerical results,” Appl. Opt. 38, 1867–1876 (1999).

[CrossRef]

K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized Lorenz–Mie theory,” Appl. Opt. 37, 4218–4225 (1998).

[CrossRef]

J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic resonances and Q factors of a chiral sphere,” IEEE Trans. Antennas Propag. 52, 213–219 (2004).

[CrossRef]

M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991).

[CrossRef]

D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body,” IEEE Trans. Antennas Propag. 51, 1077–1084 (2003).

[CrossRef]

A. Semichaevsky, A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, “Novel BI-FDTD approach for the analysis of chiral cylinders and spheres,” IEEE Trans. Antennas Propag. 54, 925–932 (2006).

[CrossRef]

V. Demir, A. Elsherbeni, D. Worasawate, and E. Arvas, “A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or chiral sphere,” IEEE Trans. Antennas Propag. Mag. 46, 94–99 (2004).

[CrossRef]

C. N. Chiu and C.-I. G. Hsu, “Scattering and shielding properties of a chiral-coated fiber-reinforced plastic composite cylinder,” IEEE Trans. Electromagn. Compat. 47, 123–130 (2005).

[CrossRef]

G. Gouesbet, “Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions,” J. Opt. 26, 225–239 (1995).

[CrossRef]

N. Wongkasem and A. Akyurtlu, “Light splitting effects in chiral metamaterials,” J. Opt. 12, 035101 (2010).

[CrossRef]

M. Yokota, S. He, and T. Takenaka, “Scattering of a Hermite–Gaussian beam field by a chiral sphere,” J. Opt. Soc. Am A 18, 1681–1689 (2001).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. A. Lock, “Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam,” J. Opt. Soc. Am. A 14, 653–661 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011).

[CrossRef]

T. G. Mackay and A. Lakhtakia, “Simultaneous negative-and-positive-phase-velocity propagation in an isotropic chiral medium,” Microw. Opt. Technol. Lett. 49, 1245–1246 (2007).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

J. Dong, “Exotic characteristics of power propagation in the chiral nihility fiber,” Progress Electromagn. Res. 99, 163–178 (2009).

[CrossRef]

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957), Chap. 4.

C. T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Int. Textbook Company, 1971).