S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547(2011).

[CrossRef]
[PubMed]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Interior photon absorption based adaptive regularization improves diffuse optical tomography,” Proc. SPIE 7546, 754611 (2010).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. London Ser. A 465, 1561–1579 (2009).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamic sub-optimal filter for elastography under static loading and measurements,” Phys. Med. Biol. 54, 285–305 (2009).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105, 024702 (2009).

[CrossRef]

B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52, 1409–1429 (2007).

[CrossRef]
[PubMed]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]
[PubMed]

U. Ascher, E. Haber, and H. Huang, “On effective methods for implicit piecewise smooth surface recovery,” SIAM J. Comput. 28, 339–358 (2006).

[CrossRef]

K. van den Doel and U. Ascher, “On level set regularization for highly ill-posed distributed parameter estimation problems,” J. Comput. Phys. 216, 707–723 (2006).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]
[PubMed]

A. P. Gibson, J. Hebden, and Arridge, “Recent advantages in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]
[PubMed]

M. Autiero, R. Liuzzi, P. Riccio, and G. Roberti, “Determination of the concentration scaling law of the scattering coefficient of water solutions of Intralipid at 832 nm by comparision between collimated detection and Monte Carlo simulations,” Lasers Surg. Med. 36, 414–422 (2005).

[CrossRef]
[PubMed]

L. Muzi, A. P. Lyons, and E. Pouliquen, “Use of X-ray computed tomography for the estimation of parameters relevant to the modeling of acoustic scattering from the seaﬂoor,” Nucl. Instrum. Methods Phys. Res. B 213, 491–497 (2004).

[CrossRef]

A. D. Klose and A. H. Heilscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Probl. 19387–409 (2003).

[CrossRef]

A. D. Close and A. H. Heilscher, “Optical tomography using time independent equation of radiative transfer—Part 2: inverse model,” J. Quant. Spectrosc. Radiat. Transfer 72715–732(2002).

[CrossRef]

D. Roy, “A numeric-analytic technique non-linear deterministic and stochastic dynamical systems,” Proc. R. Soc. London Ser. A 457, 539–566 (2001).

[CrossRef]

D. Roy, “Phase space linearization for non-linear oscillator: deterministic and stochastic systems,” J. Sound Vib. 231, 307–341(2000).

[CrossRef]

F. Hettlich and W. Rundell, “A second degree method for nonlinear inverse problem,” SIAM J. Numer. Anal. 37, 587–620(2000).

[CrossRef]

G. H. Gulub, P. C. Hansen, and D. O’Leary, “Tikhonov regularization and total least squares,” SIAM. J. Matrix Anal. Appl. 21, 185–194 (1999).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271(1999).

[CrossRef]

S. R. Arridge and M. Schweiger, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

M. Cheny, D. Issacson, and J. C. Newell, “Electrical impedance tomography,” SIAM Rev. 41, 85–101 (1999).

[CrossRef]

K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

T. J. Ypma, “Historical development of the Newton-Raphson method,” SIAM Rev. 37, 531–551 (1995).

[CrossRef]

A. Whitten and J. E. Molyneux, “Geophysical imaging with arbitrary source illumination,” IEEE Trans. Geosci. Remote Sens. 26, 409–419 (1988).

[CrossRef]

D. W. Marquardt, “An algorithm for the least-square estimation of non-linear parameters,” SIAM J. Appl. Math. 11, 431–441(1963).

[CrossRef]

K. Levenberg, “A method for the solution of certain non-linear problems in least-squares,” Q. J. Appl. Math. 2, 164–168(1944).

A. P. Gibson, J. Hebden, and Arridge, “Recent advantages in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]
[PubMed]

S. R. Arridge and M. Schweiger, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

S. R. Arridge and M. Schweiger, “A gradient based optimization scheme for optical tomography,” Opt. Express 2, 213–226(1998).

[CrossRef]
[PubMed]

U. Ascher, E. Haber, and H. Huang, “On effective methods for implicit piecewise smooth surface recovery,” SIAM J. Comput. 28, 339–358 (2006).

[CrossRef]

K. van den Doel and U. Ascher, “On level set regularization for highly ill-posed distributed parameter estimation problems,” J. Comput. Phys. 216, 707–723 (2006).

[CrossRef]

M. Autiero, R. Liuzzi, P. Riccio, and G. Roberti, “Determination of the concentration scaling law of the scattering coefficient of water solutions of Intralipid at 832 nm by comparision between collimated detection and Monte Carlo simulations,” Lasers Surg. Med. 36, 414–422 (2005).

[CrossRef]
[PubMed]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamic sub-optimal filter for elastography under static loading and measurements,” Phys. Med. Biol. 54, 285–305 (2009).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. London Ser. A 465, 1561–1579 (2009).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547(2011).

[CrossRef]
[PubMed]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Interior photon absorption based adaptive regularization improves diffuse optical tomography,” Proc. SPIE 7546, 754611 (2010).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105, 024702 (2009).

[CrossRef]

M. Cheny, D. Issacson, and J. C. Newell, “Electrical impedance tomography,” SIAM Rev. 41, 85–101 (1999).

[CrossRef]

A. D. Close and A. H. Heilscher, “Optical tomography using time independent equation of radiative transfer—Part 2: inverse model,” J. Quant. Spectrosc. Radiat. Transfer 72715–732(2002).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271(1999).

[CrossRef]

J. E. Dennis, Jr., and R. B. Schnabel, “Quasi Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, 1983).

A. P. Gibson, J. Hebden, and Arridge, “Recent advantages in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]
[PubMed]

G. H. Gulub, P. C. Hansen, and D. O’Leary, “Tikhonov regularization and total least squares,” SIAM. J. Matrix Anal. Appl. 21, 185–194 (1999).

[CrossRef]

U. Ascher, E. Haber, and H. Huang, “On effective methods for implicit piecewise smooth surface recovery,” SIAM J. Comput. 28, 339–358 (2006).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271(1999).

[CrossRef]

G. H. Gulub, P. C. Hansen, and D. O’Leary, “Tikhonov regularization and total least squares,” SIAM. J. Matrix Anal. Appl. 21, 185–194 (1999).

[CrossRef]

A. P. Gibson, J. Hebden, and Arridge, “Recent advantages in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Heilscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Probl. 19387–409 (2003).

[CrossRef]

A. D. Close and A. H. Heilscher, “Optical tomography using time independent equation of radiative transfer—Part 2: inverse model,” J. Quant. Spectrosc. Radiat. Transfer 72715–732(2002).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271(1999).

[CrossRef]

F. Hettlich and W. Rundell, “A second degree method for nonlinear inverse problem,” SIAM J. Numer. Anal. 37, 587–620(2000).

[CrossRef]

U. Ascher, E. Haber, and H. Huang, “On effective methods for implicit piecewise smooth surface recovery,” SIAM J. Comput. 28, 339–358 (2006).

[CrossRef]

M. Cheny, D. Issacson, and J. C. Newell, “Electrical impedance tomography,” SIAM Rev. 41, 85–101 (1999).

[CrossRef]

K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52, 1409–1429 (2007).

[CrossRef]
[PubMed]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]
[PubMed]

A. D. Klose and A. H. Heilscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Probl. 19387–409 (2003).

[CrossRef]

K. Levenberg, “A method for the solution of certain non-linear problems in least-squares,” Q. J. Appl. Math. 2, 164–168(1944).

M. Autiero, R. Liuzzi, P. Riccio, and G. Roberti, “Determination of the concentration scaling law of the scattering coefficient of water solutions of Intralipid at 832 nm by comparision between collimated detection and Monte Carlo simulations,” Lasers Surg. Med. 36, 414–422 (2005).

[CrossRef]
[PubMed]

L. Muzi, A. P. Lyons, and E. Pouliquen, “Use of X-ray computed tomography for the estimation of parameters relevant to the modeling of acoustic scattering from the seaﬂoor,” Nucl. Instrum. Methods Phys. Res. B 213, 491–497 (2004).

[CrossRef]

D. W. Marquardt, “An algorithm for the least-square estimation of non-linear parameters,” SIAM J. Appl. Math. 11, 431–441(1963).

[CrossRef]

A. Whitten and J. E. Molyneux, “Geophysical imaging with arbitrary source illumination,” IEEE Trans. Geosci. Remote Sens. 26, 409–419 (1988).

[CrossRef]

L. Muzi, A. P. Lyons, and E. Pouliquen, “Use of X-ray computed tomography for the estimation of parameters relevant to the modeling of acoustic scattering from the seaﬂoor,” Nucl. Instrum. Methods Phys. Res. B 213, 491–497 (2004).

[CrossRef]

M. Cheny, D. Issacson, and J. C. Newell, “Electrical impedance tomography,” SIAM Rev. 41, 85–101 (1999).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]
[PubMed]

G. H. Gulub, P. C. Hansen, and D. O’Leary, “Tikhonov regularization and total least squares,” SIAM. J. Matrix Anal. Appl. 21, 185–194 (1999).

[CrossRef]

K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

L. Muzi, A. P. Lyons, and E. Pouliquen, “Use of X-ray computed tomography for the estimation of parameters relevant to the modeling of acoustic scattering from the seaﬂoor,” Nucl. Instrum. Methods Phys. Res. B 213, 491–497 (2004).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547(2011).

[CrossRef]
[PubMed]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Interior photon absorption based adaptive regularization improves diffuse optical tomography,” Proc. SPIE 7546, 754611 (2010).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105, 024702 (2009).

[CrossRef]

M. Autiero, R. Liuzzi, P. Riccio, and G. Roberti, “Determination of the concentration scaling law of the scattering coefficient of water solutions of Intralipid at 832 nm by comparision between collimated detection and Monte Carlo simulations,” Lasers Surg. Med. 36, 414–422 (2005).

[CrossRef]
[PubMed]

M. Autiero, R. Liuzzi, P. Riccio, and G. Roberti, “Determination of the concentration scaling law of the scattering coefficient of water solutions of Intralipid at 832 nm by comparision between collimated detection and Monte Carlo simulations,” Lasers Surg. Med. 36, 414–422 (2005).

[CrossRef]
[PubMed]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamic sub-optimal filter for elastography under static loading and measurements,” Phys. Med. Biol. 54, 285–305 (2009).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. London Ser. A 465, 1561–1579 (2009).

[CrossRef]

D. Roy, “A numeric-analytic technique non-linear deterministic and stochastic dynamical systems,” Proc. R. Soc. London Ser. A 457, 539–566 (2001).

[CrossRef]

D. Roy, “Phase space linearization for non-linear oscillator: deterministic and stochastic systems,” J. Sound Vib. 231, 307–341(2000).

[CrossRef]

F. Hettlich and W. Rundell, “A second degree method for nonlinear inverse problem,” SIAM J. Numer. Anal. 37, 587–620(2000).

[CrossRef]

J. E. Dennis, Jr., and R. B. Schnabel, “Quasi Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, 1983).

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]
[PubMed]

S. R. Arridge and M. Schweiger, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

S. R. Arridge and M. Schweiger, “A gradient based optimization scheme for optical tomography,” Opt. Express 2, 213–226(1998).

[CrossRef]
[PubMed]

K. van den Doel and U. Ascher, “On level set regularization for highly ill-posed distributed parameter estimation problems,” J. Comput. Phys. 216, 707–723 (2006).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547(2011).

[CrossRef]
[PubMed]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Interior photon absorption based adaptive regularization improves diffuse optical tomography,” Proc. SPIE 7546, 754611 (2010).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamic sub-optimal filter for elastography under static loading and measurements,” Phys. Med. Biol. 54, 285–305 (2009).

[CrossRef]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. London Ser. A 465, 1561–1579 (2009).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105, 024702 (2009).

[CrossRef]

B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52, 1409–1429 (2007).

[CrossRef]
[PubMed]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]
[PubMed]

C. Vogel, Computational Methods for Inverse Problems (SIAM, 2002).

[CrossRef]

A. Whitten and J. E. Molyneux, “Geophysical imaging with arbitrary source illumination,” IEEE Trans. Geosci. Remote Sens. 26, 409–419 (1988).

[CrossRef]

T. J. Ypma, “Historical development of the Newton-Raphson method,” SIAM Rev. 37, 531–551 (1995).

[CrossRef]

A. Whitten and J. E. Molyneux, “Geophysical imaging with arbitrary source illumination,” IEEE Trans. Geosci. Remote Sens. 26, 409–419 (1988).

[CrossRef]

A. H. Heilscher, A. D. Close, and K. M. Hansen, “Gradient based iterative image reconstruction scheme for time resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262–271(1999).

[CrossRef]

S. R. Arridge and M. Schweiger, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

A. D. Klose and A. H. Heilscher, “Quasi-Newton methods in optical tomographic image reconstruction,” Inverse Probl. 19387–409 (2003).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105, 024702 (2009).

[CrossRef]

K. van den Doel and U. Ascher, “On level set regularization for highly ill-posed distributed parameter estimation problems,” J. Comput. Phys. 216, 707–723 (2006).

[CrossRef]

A. D. Close and A. H. Heilscher, “Optical tomography using time independent equation of radiative transfer—Part 2: inverse model,” J. Quant. Spectrosc. Radiat. Transfer 72715–732(2002).

[CrossRef]

D. Roy, “Phase space linearization for non-linear oscillator: deterministic and stochastic systems,” J. Sound Vib. 231, 307–341(2000).

[CrossRef]

M. Autiero, R. Liuzzi, P. Riccio, and G. Roberti, “Determination of the concentration scaling law of the scattering coefficient of water solutions of Intralipid at 832 nm by comparision between collimated detection and Monte Carlo simulations,” Lasers Surg. Med. 36, 414–422 (2005).

[CrossRef]
[PubMed]

K. D. Paulsen and H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).

[CrossRef]
[PubMed]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Accelerated gradient based diffuse optical tomographic image reconstruction,” Med. Phys. 38, 539–547(2011).

[CrossRef]
[PubMed]

L. Muzi, A. P. Lyons, and E. Pouliquen, “Use of X-ray computed tomography for the estimation of parameters relevant to the modeling of acoustic scattering from the seaﬂoor,” Nucl. Instrum. Methods Phys. Res. B 213, 491–497 (2004).

[CrossRef]

B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52, 1409–1429 (2007).

[CrossRef]
[PubMed]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamic sub-optimal filter for elastography under static loading and measurements,” Phys. Med. Biol. 54, 285–305 (2009).

[CrossRef]

M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss–Newton method for image reconstruction in diffuse optical tomography,” Phys. Med. Biol. 50, 2365–2386 (2005).

[CrossRef]
[PubMed]

A. P. Gibson, J. Hebden, and Arridge, “Recent advantages in diffuse optical tomography,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]
[PubMed]

B. Kanmani and R. M. Vasu, “Diffuse optical tomography through solving a system of quadratic equations: theory and simulations,” Phys. Med. Biol. 51, 981–998 (2006).

[CrossRef]
[PubMed]

B. Banerjee, D. Roy, and R. M. Vasu, “A pseudo-dynamical systems approach to a class of inverse problems in engineering,” Proc. R. Soc. London Ser. A 465, 1561–1579 (2009).

[CrossRef]

D. Roy, “A numeric-analytic technique non-linear deterministic and stochastic dynamical systems,” Proc. R. Soc. London Ser. A 457, 539–566 (2001).

[CrossRef]

S. K. Biswas, K. Rajan, and R. M. Vasu, “Interior photon absorption based adaptive regularization improves diffuse optical tomography,” Proc. SPIE 7546, 754611 (2010).

[CrossRef]

K. Levenberg, “A method for the solution of certain non-linear problems in least-squares,” Q. J. Appl. Math. 2, 164–168(1944).

D. W. Marquardt, “An algorithm for the least-square estimation of non-linear parameters,” SIAM J. Appl. Math. 11, 431–441(1963).

[CrossRef]

U. Ascher, E. Haber, and H. Huang, “On effective methods for implicit piecewise smooth surface recovery,” SIAM J. Comput. 28, 339–358 (2006).

[CrossRef]

F. Hettlich and W. Rundell, “A second degree method for nonlinear inverse problem,” SIAM J. Numer. Anal. 37, 587–620(2000).

[CrossRef]

T. J. Ypma, “Historical development of the Newton-Raphson method,” SIAM Rev. 37, 531–551 (1995).

[CrossRef]

M. Cheny, D. Issacson, and J. C. Newell, “Electrical impedance tomography,” SIAM Rev. 41, 85–101 (1999).

[CrossRef]

G. H. Gulub, P. C. Hansen, and D. O’Leary, “Tikhonov regularization and total least squares,” SIAM. J. Matrix Anal. Appl. 21, 185–194 (1999).

[CrossRef]

C. Vogel, Computational Methods for Inverse Problems (SIAM, 2002).

[CrossRef]

J. E. Dennis, Jr., and R. B. Schnabel, “Quasi Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, 1983).