Abstract

We analyze the optical resolution of Fourier transform spectral interferometric-coherent anti-Stokes Raman scattering microscopy, which extracts the complex amplitude of an image by using a spectral interferometric effect. Image-formation formulas are presented that describe the properties of the image observed by the apparatus. The image-formation properties represented by the coherent transfer function are different depending on the mode (transmission, reflection, etc.) of the microscopy.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [CrossRef] [PubMed]
  3. E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
    [CrossRef]
  4. I. Freund and M. Deutsch, “2nd-harmonic microscopy of biological tissue,” Opt. Lett. 11, 94–96 (1986).
    [CrossRef] [PubMed]
  5. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
    [CrossRef] [PubMed]
  6. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
    [CrossRef]
  7. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [CrossRef]
  8. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
    [CrossRef] [PubMed]
  9. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef] [PubMed]
  10. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
    [CrossRef] [PubMed]
  11. N. Fukutake, “Resolution properties of nonlinear optical microscopy,” J. Opt. Soc. Am. A 27, 1701–1707 (2010).
    [CrossRef]
  12. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352(1982).
    [CrossRef] [PubMed]
  13. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  14. M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
    [CrossRef]
  15. Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
    [CrossRef]
  16. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007).
    [CrossRef] [PubMed]
  17. S. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett. 32, 1332–1334 (2007).
    [CrossRef] [PubMed]
  18. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).
  19. C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik 100, 155–158 (1995).
  20. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
    [CrossRef]
  21. S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166(1992).
    [CrossRef]

2010

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

N. Fukutake, “Resolution properties of nonlinear optical microscopy,” J. Opt. Soc. Am. A 27, 1701–1707 (2010).
[CrossRef]

2008

2007

2003

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

2001

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
[CrossRef]

1999

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

1998

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

1997

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

1995

C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik 100, 155–158 (1995).

1994

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef] [PubMed]

1992

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1986

1982

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Bonn, M.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).

Brakenhoff, G. J.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Caster, A. G.

Chen, F.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

Clark, H. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Couderc, V.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Day, J. P. R.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Deutsch, M.

Ding, S.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

Dixon, R. A.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

Duncan, M. D.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Evans, C. L.

Freund, I.

Friedrich, M. G.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

Fukutake, N.

Gu, M.

C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik 100, 155–158 (1995).

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
[CrossRef]

Hamagichi, H.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Harke, B.

Hell, S. W.

Himmel, M. E.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Kano, H.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Keller, J.

Kesari, S.

Leone, S. R.

Leproux, P.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Lewis, A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Lim, S.

Lindek, S.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Liu, Y.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

Loew, L. M.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Manuccia, T. J.

Mertz, J.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

Moreaux, L.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
[CrossRef]

Muller, M.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

Okuno, M.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Pick, R.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Reintjes, J.

Ritter, G.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Saar, B. G.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

Salmon, N.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Schönle, A.

Sheppard, C. J. R.

C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik 100, 155–158 (1995).

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Squier, J.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

Stelzer, E. H. K.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166(1992).
[CrossRef]

Storz, C.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Stricker, R.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Ullal, C. K.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Westphal, V.

Wichmann, J.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

Wilson, K. R.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).

Wong, S. T. C.

Xie, X. S.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076–12087 (2007).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Xu, X.

Young, G. S.

Zeng, Y.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Ang. Chem. Int. Ed.

M. Okuno, H. Kano, P. Leproux, V. Couderc, J. P. R. Day, M. Bonn, and H. Hamagichi, “Quantitative CARS molecular fingerprinting of single living cells with the use of the maximum entropy method,” Ang. Chem. Int. Ed. 49, 6773–6777 (2010).
[CrossRef]

Appl. Phys. Lett.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Bioenerg. Res.

Y. Zeng, B. G. Saar, M. G. Friedrich, F. Chen, Y. Liu, R. A. Dixon, M. E. Himmel, X. S. Xie, and S. Ding, “Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy,” Bioenerg. Res. 3, 272–277 (2010).
[CrossRef]

J. Biomed. Opt.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef] [PubMed]

J. Microsc.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nat. Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef] [PubMed]

Opt. Commun.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik 100, 155–158 (1995).

Phys. Rev. Lett.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a nonlinear optical microscopy system.

Fig. 2
Fig. 2

Cross section of 3D pupil function in a spatial-frequency domain. The configuration is shaped like a partial spherical shell with a radius of n / λ . U + ( f ) corresponds to the beam propagating in the direction of + z , and U ( f ) corresponds to the beam propagating in the direction of z .

Fig. 3
Fig. 3

Example of 4Pi (type C) confocal FTSI-CARS microscopy. A coherent supercontinuum generated by injecting pump pulses into a photonic crystal fiber is used as the Stokes beam. A part of the beam from a laser source is used as the pump beam.

Fig. 4
Fig. 4

Cross sections of the coherent transfer functions for f y = 0 . (a) Transmission mode. (b) Reflection mode. (c) 4Pi mode (type A). (d) 4Pi mode (type B). (e) 4Pi mode (type C). The wavelengths of pump, Stokes, and CARS emission are assumed to be approximately equivalent to λ, and the NAs of the excitation system and the collection system are 0.9 ( n = 1 ).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = γ ( x 1 x 2 ) χ ( i ) ( x 1 + x ) χ ( i ) * ( x 2 + x ) u ex ( x 1 ) u ex * ( x 2 ) × u col ( x a x 1 ) u col * ( x a x 2 ) a ( x a ) d 3 x 1 d 3 x 2 d 3 x a .
I C ( x ) = | χ ( i ) ( x + x ) u ex ( x ) u col ( x a x ) d 3 x | 2 a ( x a ) d 3 x a .
I I C ( x ) = | χ ( i ) ( x + x ) | 2 | u ex ( x ) | 2 | u col ( x a x ) | 2 d 3 x a ( x a ) d 3 x a .
I ( x ) exp [ i 2 π f · x ] d 3 x = T ( f , f f ) X ( i ) ( f ) X ( i ) * ( f f ) d 3 f ,
T ( f , f f ) = Γ ( f 0 ) A ( f 2 f 1 ) U col ( f 1 ) U col * ( f 2 ) × U ex ( f 1 f 0 f ) U ex * ( f 2 f 0 f + f ) × d 3 f 0 d 3 f 1 d 3 f 2 ,
U ex ( f ) = ( [ p l P m ] [ P n * P o * ] ) ( f ) ,
( g 1 g 2 ) ( f ) = g 1 ( f ) g 2 ( f f ) d 3 f ,
( g 1 g 2 ) ( f ) = g 1 ( f ) g 2 ( f f ) d 3 f ,
OTF ( f ) A ( f ) { ( U col U col * ) ( f ) } { ( U ex U ex * ) ( f f ) } d 3 f ,
I C conf ( x ) = | C ( x ) | 2 | χ ( i ) ( x + x ) u ex ( x ) u col ( x ) d 3 x | 2 ,
T C conf ( f , f f ) = CTF ( f ) CTF * ( f f ) ,
C ( x ) exp [ i 2 π f · x ] d 3 x = X ( i ) ( f ) CTF ( f ) ,
I C conf ( x , ω s ) = | { χ NR ( 3 ) ( ω s ) + χ R ( 3 ) ( x + x , ω s ) } × u ex ( x , ω s ) u col ( x , ω s ) d 3 x | 2 | C NR ( ω s ) | 2 + 2 Re { C R ( x , ω s ) } C NR ( ω s ) ,
C NR ( ω s ) = χ NR ( 3 ) ( ω s ) u ex ( x , ω s ) u col ( x , ω s ) d 3 x C R ( x , ω s ) = χ R ( 3 ) ( x + x , ω s ) u ex ( x , ω s ) u col ( x , ω s ) d 3 x ,
I C conf ( x , ω s ) = C NR 2 + 2 C NR Re { C R ( x , ω s ) } .
FT ( I C conf ( x , ω s ) ) C NR 2 δ ( x , t ) + C NR { A R ( x , t ) + A R * ( x , t ) } ,
A R ( x , t ) = FT [ C R ( x , ω s ) ] .
C R ( x , ω s ) FT 1 [ H 0 ( t ) FT [ I C conf ( x , ω s ) ] ] .
C R ( x , ω s ) exp [ i 2 π f · x ] d 3 x = X R ( 3 ) ( f , ω s ) CTF ( f , ω s ) ,
CTF ( f , ω s ) = { U col ( [ P p P p ] P s * ) } ( f , ω s ) ,

Metrics