Abstract

The replacement of used-up ink cartridges is unavoidable, but it makes the existing characterization model far from accurate, while recharacterization is labor intensive. In this study, we propose a new correction method for cellular Yule–Nielsen spectral Neugebauer (CYNSN) models based on principal component analysis (PCA). First, a small set of correction samples are predicted, printed using new ink cartridges, and then measured. Second, the link between the predicted and measured reflectance weights, generated by PCA, is determined. The experimental results show that the proposed method provides a significant and robust improvement, since not only the color change between original and new inks but also the systemic error of CYNSN modelsis taken into account in the method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Balasubramanian, “Device characterization,” in Digital Color Imaging Handbook, G.Sharma, ed. (CRC Press, 2003), pp. 269–379.
  2. J. Guo, H. Xu, and M. R. Luo, “Novel spectral characterization method for color printer based on the cellular Neugebauer model,” Chin. Opt. Lett. 8, 1106–1109 (2010).
    [CrossRef]
  3. B. Wang, H. Xu, M. R. Luo, and J. Guo, “Spectral-based color separation method for a multi-ink printer,” Chin. Opt. Lett. 9, 063301 (2011).
    [CrossRef]
  4. T. Balasubramanian, “Method for refining an existing printer calibration using a small number of measurements,” U.S. patent 5,739,927 (14 April 1998).
  5. D. Littlewood and G. Subbarayan, “Maintaining an accurate printer characterization,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2004), pp. 203–210.
  6. M. Shaw, G. Sharma, R. Bala, and E. N. Dalal, “Color printer characterization adjustment for different substrates,” Color Res. Appl. 28, 454–467 (2003).
    [CrossRef]
  7. I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer, 2002).
  8. X. Zhang and H. Xu, “Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis,” J. Opt. Soc. Am. A 25, 371–378 (2008).
    [CrossRef]
  9. D. Connah, A. Alsam, and J. Y. Hardeberg, “Multispectral imaging: how many sensors do we need?” J. Imaging Sci. Technol. 50, 45–52 (2006).
    [CrossRef]
  10. H. E. J. Neugebauer, “Die theoretischen Grundlagen des Mehrfarbenbuchdrucks,” Zeitschrift fur wissenschaftliche Photographie 36, 73–89 (1937).
  11. J. A. C. Yule and W. J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).
  12. K. J. Heuberger, Z. M. Jing, and S. Persiev, “Color transformations and lookup table,” in Proceedings of the Technical Association of the Graphic Arts (Technical Association of the Graphic Arts, 1992), pp. 863–881.
  13. D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
    [CrossRef]
  14. P. Emmel, “Physical models for color prediction,” in Digital Color Imaging Handbook, G.Sharma, ed. (CRC Press, 2003), pp. 173–238.
  15. D. Tzeng, “Spectral-based color separation algorithm development for multi-ink color reproduction,” Ph.D. thesis (Rochester Institute of Technology, 1999).
  16. M. R. Luo, “Development of colour-difference formulae,” Rev. Prog. Color. Relat. Top. 32, 28–39 (2002).
    [CrossRef]

2011 (1)

2010 (1)

2008 (1)

2006 (1)

D. Connah, A. Alsam, and J. Y. Hardeberg, “Multispectral imaging: how many sensors do we need?” J. Imaging Sci. Technol. 50, 45–52 (2006).
[CrossRef]

2003 (1)

M. Shaw, G. Sharma, R. Bala, and E. N. Dalal, “Color printer characterization adjustment for different substrates,” Color Res. Appl. 28, 454–467 (2003).
[CrossRef]

2002 (1)

M. R. Luo, “Development of colour-difference formulae,” Rev. Prog. Color. Relat. Top. 32, 28–39 (2002).
[CrossRef]

2000 (1)

D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
[CrossRef]

1951 (1)

J. A. C. Yule and W. J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).

1937 (1)

H. E. J. Neugebauer, “Die theoretischen Grundlagen des Mehrfarbenbuchdrucks,” Zeitschrift fur wissenschaftliche Photographie 36, 73–89 (1937).

Alsam, A.

D. Connah, A. Alsam, and J. Y. Hardeberg, “Multispectral imaging: how many sensors do we need?” J. Imaging Sci. Technol. 50, 45–52 (2006).
[CrossRef]

Bala, R.

M. Shaw, G. Sharma, R. Bala, and E. N. Dalal, “Color printer characterization adjustment for different substrates,” Color Res. Appl. 28, 454–467 (2003).
[CrossRef]

Balasubramanian, R.

R. Balasubramanian, “Device characterization,” in Digital Color Imaging Handbook, G.Sharma, ed. (CRC Press, 2003), pp. 269–379.

Balasubramanian, T.

T. Balasubramanian, “Method for refining an existing printer calibration using a small number of measurements,” U.S. patent 5,739,927 (14 April 1998).

Berns, R. S.

D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
[CrossRef]

Connah, D.

D. Connah, A. Alsam, and J. Y. Hardeberg, “Multispectral imaging: how many sensors do we need?” J. Imaging Sci. Technol. 50, 45–52 (2006).
[CrossRef]

Dalal, E. N.

M. Shaw, G. Sharma, R. Bala, and E. N. Dalal, “Color printer characterization adjustment for different substrates,” Color Res. Appl. 28, 454–467 (2003).
[CrossRef]

Emmel, P.

P. Emmel, “Physical models for color prediction,” in Digital Color Imaging Handbook, G.Sharma, ed. (CRC Press, 2003), pp. 173–238.

Guo, J.

Hardeberg, J. Y.

D. Connah, A. Alsam, and J. Y. Hardeberg, “Multispectral imaging: how many sensors do we need?” J. Imaging Sci. Technol. 50, 45–52 (2006).
[CrossRef]

Heuberger, K. J.

K. J. Heuberger, Z. M. Jing, and S. Persiev, “Color transformations and lookup table,” in Proceedings of the Technical Association of the Graphic Arts (Technical Association of the Graphic Arts, 1992), pp. 863–881.

Jing, Z. M.

K. J. Heuberger, Z. M. Jing, and S. Persiev, “Color transformations and lookup table,” in Proceedings of the Technical Association of the Graphic Arts (Technical Association of the Graphic Arts, 1992), pp. 863–881.

Jolliffe, I. T.

I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer, 2002).

Littlewood, D.

D. Littlewood and G. Subbarayan, “Maintaining an accurate printer characterization,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2004), pp. 203–210.

Luo, M. R.

Neugebauer, H. E. J.

H. E. J. Neugebauer, “Die theoretischen Grundlagen des Mehrfarbenbuchdrucks,” Zeitschrift fur wissenschaftliche Photographie 36, 73–89 (1937).

Nielsen, W. J.

J. A. C. Yule and W. J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).

Persiev, S.

K. J. Heuberger, Z. M. Jing, and S. Persiev, “Color transformations and lookup table,” in Proceedings of the Technical Association of the Graphic Arts (Technical Association of the Graphic Arts, 1992), pp. 863–881.

Sharma, G.

M. Shaw, G. Sharma, R. Bala, and E. N. Dalal, “Color printer characterization adjustment for different substrates,” Color Res. Appl. 28, 454–467 (2003).
[CrossRef]

Shaw, M.

M. Shaw, G. Sharma, R. Bala, and E. N. Dalal, “Color printer characterization adjustment for different substrates,” Color Res. Appl. 28, 454–467 (2003).
[CrossRef]

Subbarayan, G.

D. Littlewood and G. Subbarayan, “Maintaining an accurate printer characterization,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2004), pp. 203–210.

Tzeng, D.

D. Tzeng, “Spectral-based color separation algorithm development for multi-ink color reproduction,” Ph.D. thesis (Rochester Institute of Technology, 1999).

Wang, B.

Wyble, D. R.

D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
[CrossRef]

Xu, H.

Yule, J. A. C.

J. A. C. Yule and W. J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).

Zhang, X.

Chin. Opt. Lett. (2)

Color Res. Appl. (2)

M. Shaw, G. Sharma, R. Bala, and E. N. Dalal, “Color printer characterization adjustment for different substrates,” Color Res. Appl. 28, 454–467 (2003).
[CrossRef]

D. R. Wyble and R. S. Berns, “A critical review of spectral models applied to binary color printing,” Color Res. Appl. 25, 4–19 (2000).
[CrossRef]

J. Imaging Sci. Technol. (1)

D. Connah, A. Alsam, and J. Y. Hardeberg, “Multispectral imaging: how many sensors do we need?” J. Imaging Sci. Technol. 50, 45–52 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Proc. TAGA (1)

J. A. C. Yule and W. J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).

Rev. Prog. Color. Relat. Top. (1)

M. R. Luo, “Development of colour-difference formulae,” Rev. Prog. Color. Relat. Top. 32, 28–39 (2002).
[CrossRef]

Zeitschrift fur wissenschaftliche Photographie (1)

H. E. J. Neugebauer, “Die theoretischen Grundlagen des Mehrfarbenbuchdrucks,” Zeitschrift fur wissenschaftliche Photographie 36, 73–89 (1937).

Other (7)

K. J. Heuberger, Z. M. Jing, and S. Persiev, “Color transformations and lookup table,” in Proceedings of the Technical Association of the Graphic Arts (Technical Association of the Graphic Arts, 1992), pp. 863–881.

T. Balasubramanian, “Method for refining an existing printer calibration using a small number of measurements,” U.S. patent 5,739,927 (14 April 1998).

D. Littlewood and G. Subbarayan, “Maintaining an accurate printer characterization,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (Society for Imaging Sciences and Technology, 2004), pp. 203–210.

P. Emmel, “Physical models for color prediction,” in Digital Color Imaging Handbook, G.Sharma, ed. (CRC Press, 2003), pp. 173–238.

D. Tzeng, “Spectral-based color separation algorithm development for multi-ink color reproduction,” Ph.D. thesis (Rochester Institute of Technology, 1999).

I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer, 2002).

R. Balasubramanian, “Device characterization,” in Digital Color Imaging Handbook, G.Sharma, ed. (CRC Press, 2003), pp. 269–379.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Flowchart to select the first m PCs.

Fig. 2
Fig. 2

Flowcharts to obtain corrective matrices to maintain the accuracy of existing CYNSN models using new ink cartridges.

Fig. 3
Fig. 3

Procedure to predict reflectance with the existing CYNSN models using new ink cartridges.

Fig. 4
Fig. 4

CIE a * b * values of ink primaries using original and new ink cartridges.

Fig. 5
Fig. 5

Mean Δ E 00 of the original model, the NCM, the PTM, and the PPM for every CYNSN model.

Fig. 6
Fig. 6

Comparison between the standard reflectance of a CMYK correction testing sample and the corresponding predicted reflectances by the NCM, the PTM and the PPM.

Tables (6)

Tables Icon

Table 1 CYNSN Original Model Performance for Each Model

Tables Icon

Table 2 Accuracy of the NCM for Each Existing CYNSN Model Using New Ink Cartridges

Tables Icon

Table 3 Relationship of the Accuracy of CMY and CMYK Using the PTM with the Number of PCs and That of Correction Samples

Tables Icon

Table 4 Accuracy of CYNSN Models Using the PTM with 13 PCs, 64 and 256 Correction Samples for Each Three- and Four-Ink Model

Tables Icon

Table 5 Relationship of the Accuracy of CMYK using the PPM with the Number of PCs and That of Correction Samples

Tables Icon

Table 6 Accuracy of CYNSN Models Using the PPM with 12 PCs and 50 Correction Samples

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r ( λ ) = [ i = 1 8 w i ( r i ( λ ) ) ] ,
r ( λ ) = [ i = 1 8 w i ( r i ( λ ) ) 1 / n ] n .
r ^ = i = 1 m a i v i ,
a i = v i T r ,
a = Y 1 × a ,
Y 1 = a × a T × ( a × a T ) 1 .
RDP = 1 N λ = 400 700 | r std ( λ ) r pre ( λ ) r std ( λ ) | × 100 % ,

Metrics