Abstract

Imaging studies of the breast comprise three principal sensing domains: structural, mechanical, and functional. Combinations of these domains can yield either additive or wholly new information, depending on whether one domain interacts with the other. In this report, we describe a new approach to breast imaging based on the interaction between controlled applied mechanical force and tissue hemodynamics. Presented is a description of the system design, performance characteristics, and representative clinical findings for a second-generation dynamic near-infrared optical tomographic breast imager that examines both breasts simultaneously, under conditions of rest and controlled mechanical provocation. The expected capabilities and limitations of the developed system are described in relation to the various sensing domains for breast imaging.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin. 60, 277–300 (2010).
    [CrossRef] [PubMed]
  2. R. E. Hendrick, “Contrast agents in breast magnetic resonance imaging,” in Breast MRI, Fundamentals and Technical Aspects (Springer, 2008), Chap. 8, pp. 113–134.
  3. P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
    [PubMed]
  4. P. Vaupel, “Blood perfusion and microenvironment of human tumors, implications for clinical radiooncology,” in Tumor Blood Flow, M.Molls and P.Vaupel, eds. (Springer, 2000) pp. 41–45.
  5. A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
    [CrossRef] [PubMed]
  6. A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).
  7. I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995).
    [PubMed]
  8. I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imag. 15, 73–88 (1993).
    [CrossRef]
  9. A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
    [CrossRef] [PubMed]
  10. O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” J. Gen Physiol. 8, 519–530 (1927).
    [CrossRef] [PubMed]
  11. E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27, S215–S229 (2007).
    [CrossRef]
  12. S. S. Gambhir, “Molecular imaging of cancer with positron emission tomography,” Nat. Rev. Cancer 2, 683–693 (2002).
    [CrossRef] [PubMed]
  13. T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
    [CrossRef] [PubMed]
  14. R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).
  15. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
    [CrossRef] [PubMed]
  16. R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.
  17. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
    [CrossRef]
  18. G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
    [CrossRef]
  19. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001).
    [CrossRef] [PubMed]
  20. C. H. Schmitz, H. L. Graber, and R. L. Barbour, “Peripheral vascular noninvasive measurements,” in Encyclopedia of Medical Devices and Instrumentation, 2nd ed., J.G.Webster, ed. (Wiley-Interscience, 2006), pp. 234–252.
  21. C. H. Schmitz, D. P. Klemer, R. E. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140–2153 (2005).
    [CrossRef] [PubMed]
  22. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
    [CrossRef] [PubMed]
  23. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
    [CrossRef] [PubMed]
  24. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
    [CrossRef] [PubMed]
  25. S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214(2003).
    [CrossRef] [PubMed]
  26. S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt. 48, D130–D136 (2009).
    [CrossRef] [PubMed]
  27. S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
    [CrossRef]
  28. S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
    [CrossRef] [PubMed]
  29. R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007).
    [CrossRef] [PubMed]
  30. B. Wang, S. P. Povoski, X. Cao, D. Sun, and R. X. Xu, “Dynamic schema for near infrared detection of pressure-induced changes in solid tumors,” Appl. Opt. 47, 3053–3063 (2008).
    [CrossRef] [PubMed]
  31. R. M. Christensen, “Viscoelastic stress strain constitutive relations,” in Theory of Viscoelaticity, 2nd ed. (Academic, 1982), Chap. 1, pp. 16–20.
  32. R. Lakes, “Constitutive relations,” in Viscoelastic Materials (Cambridge University, 2009), Chap. 2, pp. 22–26.
  33. P. Regnault, “Breast ptosis: definition and treatment,” Clin. Plast. Surg. 3, 193–203 (1976).
    [PubMed]
  34. R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
    [CrossRef]
  35. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853(1997).
    [CrossRef] [PubMed]
  36. V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
    [CrossRef] [PubMed]
  37. F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformation of the breast under external perturbation,” Med. Image Anal. 6, 1–27 (2002).
    [CrossRef] [PubMed]
  38. Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
    [CrossRef]
  39. H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by DC optical tomography,” IEEE Trans. Med. Imaging 21, 852–866 (2002).
    [CrossRef] [PubMed]
  40. R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Model for 3-D optical imaging of tissue,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (IEEE, 1990), Vol.  2, pp. 1395–1399.
    [CrossRef]
  41. R. L. Barbour, H. L. Graber, J. Lubowsky, and R. Aronson, “Monte Carlo (MC) modeling of photon transport in tissue (PTT) V: model for 3-D optical imaging of tissue,” Biophys. J. 57, p. 382a (1990).
  42. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
    [CrossRef] [PubMed]
  43. Y. Pei, H. L. Graber, and R. L. Barbour, “A fast reconstruction algorithm for implementation of time-series DC optical tomography,” Proc. SPIE 4955, 236–245 (2003).
    [CrossRef]
  44. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
    [CrossRef] [PubMed]
  45. D. G. Russell and J. T. Ziewacz, “Pressures in a simulated breast subjected to compression forces comparable to those of mammography,” Radiology 194, 383–387 (1995).
    [PubMed]
  46. A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52, 1565–1576 (2007).
    [CrossRef] [PubMed]
  47. J. Sciarretta, “MR validation of soft tissue deformation as modeled by non-linear finite element analysis,” MS thesis (University of Toronto, 2000).
  48. S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: the force journey of a tumor cell,” Cancer Metastasis Rev. 28, 113–127 (2009).
    [CrossRef] [PubMed]
  49. P. Schedin and P. J. Keely, “Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression,” Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).
    [CrossRef]
  50. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
    [CrossRef] [PubMed]
  51. S. Thomsen and D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
    [CrossRef] [PubMed]
  52. A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007).
    [CrossRef] [PubMed]
  53. S. McDonald, D. Saslow, and M. H. Alciati, “Performance and reporting of clinical breast examination: a review of the literature,” CA Cancer J. Clin. 54, 345–361 (2004).
    [CrossRef] [PubMed]
  54. J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
    [CrossRef] [PubMed]
  55. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
    [CrossRef] [PubMed]
  56. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
    [CrossRef] [PubMed]
  57. J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
    [CrossRef] [PubMed]
  58. R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
    [CrossRef] [PubMed]
  59. B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
    [CrossRef] [PubMed]
  60. M. Egeblad, M. G. Rasch, and V. M. Weaver, “Dynamic interplay between the collagen scaffold and tumor evolution,” Curr. Opin. Cell Biol. 22, 697–706 (2010).
    [CrossRef] [PubMed]
  61. P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001).
    [CrossRef] [PubMed]
  62. V. Egorov and A. P. Sarvazyan, “Mechanical imaging of the breast,” IEEE Trans. Med. Imag. 27, 1275–1287 (2008).
    [CrossRef]
  63. H. Ponnekanti, J. Ophire, and I. Cespedes, “Axial stress distribution between coaxial compressors in elastography: an analytical model,” Ultrasound Med. Biol. 18, 667–673 (1992).
    [CrossRef] [PubMed]
  64. C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
    [CrossRef]
  65. Y. Pei, F.-B. Lin, and R. L. Barbour, “Modeling of sensitivity and resolution to an included object in a homogeneous scattering media and in MRI-derived breast map,” Opt. Express 5, 203–219 (1999).
    [CrossRef] [PubMed]
  66. H. L. Graber, Y. Xu, and R. L. Barbour, “Image correction scheme applied to functional diffuse optical tomography scattering images,” Appl. Opt. 46, 1705–1716 (2007).
    [CrossRef] [PubMed]
  67. H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
    [CrossRef] [PubMed]
  68. H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
    [CrossRef]
  69. J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
    [CrossRef] [PubMed]
  70. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
    [CrossRef] [PubMed]
  71. A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
    [CrossRef] [PubMed]
  72. J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
    [CrossRef] [PubMed]
  73. S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
    [CrossRef]
  74. D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
    [CrossRef] [PubMed]

2011 (1)

P. Schedin and P. J. Keely, “Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression,” Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).
[CrossRef]

2010 (7)

M. Egeblad, M. G. Rasch, and V. M. Weaver, “Dynamic interplay between the collagen scaffold and tumor evolution,” Curr. Opin. Cell Biol. 22, 697–706 (2010).
[CrossRef] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
[CrossRef]

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin. 60, 277–300 (2010).
[CrossRef] [PubMed]

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

2009 (4)

S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt. 48, D130–D136 (2009).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: the force journey of a tumor cell,” Cancer Metastasis Rev. 28, 113–127 (2009).
[CrossRef] [PubMed]

2008 (4)

V. Egorov and A. P. Sarvazyan, “Mechanical imaging of the breast,” IEEE Trans. Med. Imag. 27, 1275–1287 (2008).
[CrossRef]

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
[CrossRef] [PubMed]

B. Wang, S. P. Povoski, X. Cao, D. Sun, and R. X. Xu, “Dynamic schema for near infrared detection of pressure-induced changes in solid tumors,” Appl. Opt. 47, 3053–3063 (2008).
[CrossRef] [PubMed]

2007 (6)

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27, S215–S229 (2007).
[CrossRef]

H. L. Graber, Y. Xu, and R. L. Barbour, “Image correction scheme applied to functional diffuse optical tomography scattering images,” Appl. Opt. 46, 1705–1716 (2007).
[CrossRef] [PubMed]

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52, 1565–1576 (2007).
[CrossRef] [PubMed]

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
[CrossRef] [PubMed]

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007).
[CrossRef] [PubMed]

2006 (4)

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

2005 (4)

C. H. Schmitz, D. P. Klemer, R. E. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140–2153 (2005).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

2004 (4)

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

S. McDonald, D. Saslow, and M. H. Alciati, “Performance and reporting of clinical breast examination: a review of the literature,” CA Cancer J. Clin. 54, 345–361 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

2003 (4)

Y. Pei, H. L. Graber, and R. L. Barbour, “A fast reconstruction algorithm for implementation of time-series DC optical tomography,” Proc. SPIE 4955, 236–245 (2003).
[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
[CrossRef]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214(2003).
[CrossRef] [PubMed]

2002 (5)

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformation of the breast under external perturbation,” Med. Image Anal. 6, 1–27 (2002).
[CrossRef] [PubMed]

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by DC optical tomography,” IEEE Trans. Med. Imaging 21, 852–866 (2002).
[CrossRef] [PubMed]

S. S. Gambhir, “Molecular imaging of cancer with positron emission tomography,” Nat. Rev. Cancer 2, 683–693 (2002).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).

2001 (7)

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001).
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001).
[CrossRef] [PubMed]

2000 (1)

1999 (3)

Y. Pei, F.-B. Lin, and R. L. Barbour, “Modeling of sensitivity and resolution to an included object in a homogeneous scattering media and in MRI-derived breast map,” Opt. Express 5, 203–219 (1999).
[CrossRef] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

1998 (1)

S. Thomsen and D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
[CrossRef] [PubMed]

1997 (1)

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853(1997).
[CrossRef] [PubMed]

1995 (2)

I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995).
[PubMed]

D. G. Russell and J. T. Ziewacz, “Pressures in a simulated breast subjected to compression forces comparable to those of mammography,” Radiology 194, 383–387 (1995).
[PubMed]

1993 (3)

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imag. 15, 73–88 (1993).
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).

1992 (1)

H. Ponnekanti, J. Ophire, and I. Cespedes, “Axial stress distribution between coaxial compressors in elastography: an analytical model,” Ultrasound Med. Biol. 18, 667–673 (1992).
[CrossRef] [PubMed]

1990 (1)

R. L. Barbour, H. L. Graber, J. Lubowsky, and R. Aronson, “Monte Carlo (MC) modeling of photon transport in tissue (PTT) V: model for 3-D optical imaging of tissue,” Biophys. J. 57, p. 382a (1990).

1989 (1)

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

1976 (1)

P. Regnault, “Breast ptosis: definition and treatment,” Clin. Plast. Surg. 3, 193–203 (1976).
[PubMed]

1927 (1)

O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” J. Gen Physiol. 8, 519–530 (1927).
[CrossRef] [PubMed]

Abdoulaev, G.

Aguirre, A.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Al abdi, R.

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

Alam, S. K.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

Alciati, M. H.

S. McDonald, D. Saslow, and M. H. Alciati, “Performance and reporting of clinical breast examination: a review of the literature,” CA Cancer J. Clin. 54, 345–361 (2004).
[CrossRef] [PubMed]

Amromin, E.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Andronica, R.

Ansari, R.

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

Ardeshirpour, Y.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Arif, I.

Aronson, R.

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).

R. L. Barbour, H. L. Graber, J. Lubowsky, and R. Aronson, “Monte Carlo (MC) modeling of photon transport in tissue (PTT) V: model for 3-D optical imaging of tissue,” Biophys. J. 57, p. 382a (1990).

R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Model for 3-D optical imaging of tissue,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (IEEE, 1990), Vol.  2, pp. 1395–1399.
[CrossRef]

Arridge, S. R.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853(1997).
[CrossRef] [PubMed]

Askew, S.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

Athanasiou, A.

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

Azar, F. S.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformation of the breast under external perturbation,” Med. Image Anal. 6, 1–27 (2002).
[CrossRef] [PubMed]

Baker, L.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Balkwill, F. R.

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

Balleyguier, C.

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

Barbour, R. L.

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

H. L. Graber, Y. Xu, and R. L. Barbour, “Image correction scheme applied to functional diffuse optical tomography scattering images,” Appl. Opt. 46, 1705–1716 (2007).
[CrossRef] [PubMed]

C. H. Schmitz, D. P. Klemer, R. E. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140–2153 (2005).
[CrossRef] [PubMed]

H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
[CrossRef]

Y. Pei, H. L. Graber, and R. L. Barbour, “A fast reconstruction algorithm for implementation of time-series DC optical tomography,” Proc. SPIE 4955, 236–245 (2003).
[CrossRef]

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by DC optical tomography,” IEEE Trans. Med. Imaging 21, 852–866 (2002).
[CrossRef] [PubMed]

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001).
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

Y. Pei, F.-B. Lin, and R. L. Barbour, “Modeling of sensitivity and resolution to an included object in a homogeneous scattering media and in MRI-derived breast map,” Opt. Express 5, 203–219 (1999).
[CrossRef] [PubMed]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).

R. L. Barbour, H. L. Graber, J. Lubowsky, and R. Aronson, “Monte Carlo (MC) modeling of photon transport in tissue (PTT) V: model for 3-D optical imaging of tissue,” Biophys. J. 57, p. 382a (1990).

R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Model for 3-D optical imaging of tissue,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (IEEE, 1990), Vol.  2, pp. 1395–1399.
[CrossRef]

C. H. Schmitz, H. L. Graber, and R. L. Barbour, “Peripheral vascular noninvasive measurements,” in Encyclopedia of Medical Devices and Instrumentation, 2nd ed., J.G.Webster, ed. (Wiley-Interscience, 2006), pp. 234–252.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.

Barbour, S.-L. S.

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.

Barlow, W. E.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Barth, R. J.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

Barton, M. B.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Barzili, N.

I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995).
[PubMed]

Berwick, J.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

Blattman, S.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.

Blattman, S. B.

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

Blickstein, I.

I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995).
[PubMed]

Bluestone, A.

Bluestone, A. Y.

Boas, D. A.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Bobrow, L. G.

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

Boverman, G.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

Brauer, K.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Brooks, D. H.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

Brooksby, B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

Busch, D. R.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

Cao, X.

Carp, S. A.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Cerussi, A. E.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
[CrossRef]

Cespedes, I.

H. Ponnekanti, J. Ophire, and I. Cespedes, “Axial stress distribution between coaxial compressors in elastography: an analytical model,” Ultrasound Med. Biol. 18, 667–673 (1992).
[CrossRef] [PubMed]

Céspedes, I.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imag. 15, 73–88 (1993).
[CrossRef]

Chance, B.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

Chang, J.

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).

Choe, R.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Choi, J.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Christensen, R. M.

R. M. Christensen, “Viscoelastic stress strain constitutive relations,” in Theory of Viscoelaticity, 2nd ed. (Academic, 1982), Chap. 1, pp. 16–20.

Claussen, C.

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
[CrossRef] [PubMed]

Coffey, P.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

Corlu, A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

Cronin, E. B.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Culver, J. P.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Czerniecki, B. J.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

Dalton, E. P.

P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001).
[CrossRef] [PubMed]

Darling, A. L.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007).
[CrossRef] [PubMed]

Davies, B.

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

Deckers, P. J.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Dehghani, H.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Delaloge, S.

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

DeMichele, A.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

diFlorio-Alexander, R. M.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

Doyley, M. M.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007).
[CrossRef] [PubMed]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

Dresner, M. A.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Dromain, C.

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

Durduran, T.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Egeblad, M.

M. Egeblad, M. G. Rasch, and V. M. Weaver, “Dynamic interplay between the collagen scaffold and tumor evolution,” Curr. Opin. Cell Biol. 22, 697–706 (2010).
[CrossRef] [PubMed]

Egorov, V.

V. Egorov and A. P. Sarvazyan, “Mechanical imaging of the breast,” IEEE Trans. Med. Imag. 27, 1275–1287 (2008).
[CrossRef]

Ehman, R. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Elmore, J. G.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Eubank, W. B.

E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27, S215–S229 (2007).
[CrossRef]

Evans, A.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Fang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Feldman, M. D.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

Felmlee, J. P.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Fenton, J. J.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Fink, M.

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
[CrossRef] [PubMed]

Fletcher, S. W.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Fournier, L.

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

Fraker, D. L.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

Franco, N. A.

Gambhir, S. S.

S. S. Gambhir, “Molecular imaging of cancer with positron emission tomography,” Nat. Rev. Cancer 2, 683–693 (2002).
[CrossRef] [PubMed]

Garra, B.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

Geiger, A. M.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Geng, J.

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

Giammarco, J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Goldchmit, R.

I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995).
[PubMed]

Goldman, R. D.

I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995).
[PubMed]

Graber, H. L.

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

H. L. Graber, Y. Xu, and R. L. Barbour, “Image correction scheme applied to functional diffuse optical tomography scattering images,” Appl. Opt. 46, 1705–1716 (2007).
[CrossRef] [PubMed]

C. H. Schmitz, D. P. Klemer, R. E. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140–2153 (2005).
[CrossRef] [PubMed]

H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
[CrossRef]

Y. Pei, H. L. Graber, and R. L. Barbour, “A fast reconstruction algorithm for implementation of time-series DC optical tomography,” Proc. SPIE 4955, 236–245 (2003).
[CrossRef]

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by DC optical tomography,” IEEE Trans. Med. Imaging 21, 852–866 (2002).
[CrossRef] [PubMed]

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).

R. L. Barbour, H. L. Graber, J. Lubowsky, and R. Aronson, “Monte Carlo (MC) modeling of photon transport in tissue (PTT) V: model for 3-D optical imaging of tissue,” Biophys. J. 57, p. 382a (1990).

R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Model for 3-D optical imaging of tissue,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (IEEE, 1990), Vol.  2, pp. 1395–1399.
[CrossRef]

C. H. Schmitz, H. L. Graber, and R. L. Barbour, “Peripheral vascular noninvasive measurements,” in Encyclopedia of Medical Devices and Instrumentation, 2nd ed., J.G.Webster, ed. (Wiley-Interscience, 2006), pp. 234–252.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.

Gratton, E.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
[CrossRef]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Greenleaf, J. F.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Guo, W. S.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

Gupta, R.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Happerfield, L. C.

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

Hardin, R. E.

Harris, E. L.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Hartmann, L. C.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).

Hebden, J. C.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853(1997).
[CrossRef] [PubMed]

Hegde, P. U.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Hendrick, R. E.

R. E. Hendrick, “Contrast agents in breast magnetic resonance imaging,” in Breast MRI, Fundamentals and Technical Aspects (Springer, 2008), Chap. 8, pp. 113–134.

Herrinton, L. J.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Hielscher, A. H.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001).
[CrossRef] [PubMed]

Hillman, E. M.

Hira, J.

Holboke, M. J.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Hou, Y.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

Howe, R. D.

P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001).
[CrossRef] [PubMed]

Hsiang, D.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
[CrossRef]

Hueber, D.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Jemal, A.

A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin. 60, 277–300 (2010).
[CrossRef] [PubMed]

Jiang, S.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt. 48, D130–D136 (2009).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214(2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Johnston, D. K.

H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
[CrossRef]

Jordan, L.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Kallel, F.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

Kallinowski, F.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Kane, M.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Katz, M. S.

Kauffman, T.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Kaufman, P. A.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

Keely, P. J.

P. Schedin and P. J. Keely, “Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression,” Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).
[CrossRef]

Kern, K. A.

P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001).
[CrossRef] [PubMed]

Klemer, D. P.

Kogel, C.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214(2003).
[CrossRef] [PubMed]

Kogel, C. A.

Konecky, S. D.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

Konofagou, E.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

Kopans, D.

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Kopans, D. B.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
[CrossRef] [PubMed]

Krag, D.

P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001).
[CrossRef] [PubMed]

Krouskop, T.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

Kruse, S. A.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Kugel, J. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).

Kukreti, S.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
[CrossRef]

Kumar, S.

S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: the force journey of a tumor cell,” Cancer Metastasis Rev. 28, 113–127 (2009).
[CrossRef] [PubMed]

Kurtzman, S. H.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Lakes, R.

R. Lakes, “Constitutive relations,” in Viscoelastic Materials (Cambridge University, 2009), Chap. 2, pp. 22–26.

Landis, G. S.

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

Laughney, A. M.

Lee, K.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

Levin, M. B.

Levina, R. D.

Li, Z.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

Lin, F.-B.

Lubowsky, J.

R. L. Barbour, H. L. Graber, J. Lubowsky, and R. Aronson, “Monte Carlo (MC) modeling of photon transport in tissue (PTT) V: model for 3-D optical imaging of tissue,” Biophys. J. 57, p. 382a (1990).

R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Model for 3-D optical imaging of tissue,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (IEEE, 1990), Vol.  2, pp. 1395–1399.
[CrossRef]

Luo, H.

Mahowald, J. L.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Maklad, N.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imag. 15, 73–88 (1993).
[CrossRef]

Manduca, A.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Mankoff, D. A.

E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27, S215–S229 (2007).
[CrossRef]

Mantulin, W.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Mao, J. J.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

Mathieu, M. C.

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

Mayhew, J.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

Mayhew, J. E.

H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
[CrossRef]

McDonald, S.

S. McDonald, D. Saslow, and M. H. Alciati, “Performance and reporting of clinical breast examination: a review of the literature,” CA Cancer J. Clin. 54, 345–361 (2004).
[CrossRef] [PubMed]

McKnight, A. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).

Mclean, D.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Metaxas, D. N.

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformation of the breast under external perturbation,” Med. Image Anal. 6, 1–27 (2002).
[CrossRef] [PubMed]

Michalos, A.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Mies, C.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

Miles, D. W.

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

Miller, E. L.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

Moore, R.

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Moore, R. H.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

Naylor, M. S.

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

Negelein, E.

O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” J. Gen Physiol. 8, 519–530 (1927).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

Okunieff, P.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Oliphant, T. E.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

Ophir, J.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imag. 15, 73–88 (1993).
[CrossRef]

Ophire, J.

H. Ponnekanti, J. Ophire, and I. Cespedes, “Axial stress distribution between coaxial compressors in elastography: an analytical model,” Ultrasound Med. Biol. 18, 667–673 (1992).
[CrossRef] [PubMed]

Panetta, T.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.

Panetta, T. F.

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

Pathak, S.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

Paulsen, K. D.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt. 48, D130–D136 (2009).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214(2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Pei, Y.

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

C. H. Schmitz, D. P. Klemer, R. E. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140–2153 (2005).
[CrossRef] [PubMed]

H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
[CrossRef]

Y. Pei, H. L. Graber, and R. L. Barbour, “A fast reconstruction algorithm for implementation of time-series DC optical tomography,” Proc. SPIE 4955, 236–245 (2003).
[CrossRef]

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by DC optical tomography,” IEEE Trans. Med. Imaging 21, 852–866 (2002).
[CrossRef] [PubMed]

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

Y. Pei, F.-B. Lin, and R. L. Barbour, “Modeling of sensitivity and resolution to an included object in a homogeneous scattering media and in MRI-derived breast map,” Opt. Express 5, 203–219 (1999).
[CrossRef] [PubMed]

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.

Plewes, D.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52, 1565–1576 (2007).
[CrossRef] [PubMed]

Pogue, B. W.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt. 48, D130–D136 (2009).
[CrossRef] [PubMed]

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214(2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Polzonetti, C.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Ponnekanti, H.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imag. 15, 73–88 (1993).
[CrossRef]

H. Ponnekanti, J. Ophire, and I. Cespedes, “Axial stress distribution between coaxial compressors in elastography: an analytical model,” Ultrasound Med. Biol. 18, 667–673 (1992).
[CrossRef] [PubMed]

Poplack, S. P.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, K. D. Paulsen, C. Kogel, and S. P. Poplack, “In vivo near-infrared spectral detection of pressure-induced changes in breast tissue,” Opt. Lett. 28, 1212–1214(2003).
[CrossRef] [PubMed]

Povoski, S. P.

B. Wang, S. P. Povoski, X. Cao, D. Sun, and R. X. Xu, “Dynamic schema for near infrared detection of pressure-induced changes in solid tumors,” Appl. Opt. 47, 3053–3063 (2008).
[CrossRef] [PubMed]

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

Purdie, C.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Putt, M. E.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

Rafferty, E.

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
[CrossRef] [PubMed]

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

Ramirez, N.

Rasch, M. G.

M. Egeblad, M. G. Rasch, and V. M. Weaver, “Dynamic interplay between the collagen scaffold and tumor evolution,” Curr. Opin. Cell Biol. 22, 697–706 (2010).
[CrossRef] [PubMed]

Regnault, P.

P. Regnault, “Breast ptosis: definition and treatment,” Clin. Plast. Surg. 3, 193–203 (1976).
[PubMed]

Reisch, L. M.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Ricci, A.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Rolnick, S. J.

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

Rosen, E. L.

E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27, S215–S229 (2007).
[CrossRef]

Rosen, M. A.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

Rossman, P. J.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).

Rubens, R. D.

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

Russell, D. G.

D. G. Russell and J. T. Ziewacz, “Pressures in a simulated breast subjected to compression forces comparable to those of mammography,” Radiology 194, 383–387 (1995).
[PubMed]

Safonova, L. P.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Samani, A.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52, 1565–1576 (2007).
[CrossRef] [PubMed]

Sarvazyan, A. P.

V. Egorov and A. P. Sarvazyan, “Mechanical imaging of the breast,” IEEE Trans. Med. Imag. 27, 1275–1287 (2008).
[CrossRef]

Saslow, D.

S. McDonald, D. Saslow, and M. H. Alciati, “Performance and reporting of clinical breast examination: a review of the literature,” CA Cancer J. Clin. 54, 345–361 (2004).
[CrossRef] [PubMed]

Schedin, P.

P. Schedin and P. J. Keely, “Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression,” Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).
[CrossRef]

Schmitz, C. H.

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

C. H. Schmitz, D. P. Klemer, R. E. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140–2153 (2005).
[CrossRef] [PubMed]

A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001).
[CrossRef] [PubMed]

R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001).
[CrossRef]

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

C. H. Schmitz, H. L. Graber, and R. L. Barbour, “Peripheral vascular noninvasive measurements,” in Encyclopedia of Medical Devices and Instrumentation, 2nd ed., J.G.Webster, ed. (Wiley-Interscience, 2006), pp. 234–252.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.

Schnall, M. D.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformation of the breast under external perturbation,” Med. Image Anal. 6, 1–27 (2002).
[CrossRef] [PubMed]

Schweiger, M.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

Sciarretta, J.

J. Sciarretta, “MR validation of soft tissue deformation as modeled by non-linear finite element analysis,” MS thesis (University of Toronto, 2000).

Selb, J.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

S. A. Carp, J. Selb, Q. Fang, R. Moore, D. B. Kopans, E. Rafferty, and D. A. Boas, “Dynamic functional and mechanical response of breast tissue to compression,” Opt. Express 16, 16064–16078(2008).
[CrossRef] [PubMed]

Siegel, R.

A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin. 60, 277–300 (2010).
[CrossRef] [PubMed]

Siegmann, K.

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
[CrossRef] [PubMed]

Sinkus, R.

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
[CrossRef] [PubMed]

Soho, S.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Soller, I.

Solomon, W. B.

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

Srinivasan, S.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Strano, S. D.

I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995).
[PubMed]

Sun, D.

Tanamai, W.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
[CrossRef]

Tannenbaum, S. H.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Tanter, M.

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
[CrossRef] [PubMed]

Tatman, D.

S. Thomsen and D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
[CrossRef] [PubMed]

Tchou, J.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

Thompson, A.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Thomsen, S.

S. Thomsen and D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
[CrossRef] [PubMed]

Thomson, K.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Toronov, V.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Tosteson, T.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

Tosteson, T. D.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
[CrossRef]

Vanel, D.

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

Varghese, T.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

Vaupel, P.

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

P. Vaupel, “Blood perfusion and microenvironment of human tumors, implications for clinical radiooncology,” in Tumor Blood Flow, M.Molls and P.Vaupel, eds. (Springer, 2000) pp. 41–45.

Vuksanovic, B.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

Wang, B.

Wang, J.

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

Wang, Y.

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).

Warburg, O.

O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” J. Gen Physiol. 8, 519–530 (1927).
[CrossRef] [PubMed]

Ward, E.

A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin. 60, 277–300 (2010).
[CrossRef] [PubMed]

Weaver, J.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

Weaver, J. B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

Weaver, V. M.

M. Egeblad, M. G. Rasch, and V. M. Weaver, “Dynamic interplay between the collagen scaffold and tumor evolution,” Curr. Opin. Cell Biol. 22, 697–706 (2010).
[CrossRef] [PubMed]

S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: the force journey of a tumor cell,” Cancer Metastasis Rev. 28, 113–127 (2009).
[CrossRef] [PubMed]

Wellman, P. S.

P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001).
[CrossRef] [PubMed]

Whelehan, P.

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

Wind, F.

O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” J. Gen Physiol. 8, 519–530 (1927).
[CrossRef] [PubMed]

Wolf, M.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Wolf, U.

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

Xu, C.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Xu, J. Q.

A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin. 60, 277–300 (2010).
[CrossRef] [PubMed]

Xu, R. X.

B. Wang, S. P. Povoski, X. Cao, D. Sun, and R. X. Xu, “Dynamic schema for near infrared detection of pressure-induced changes in solid tumors,” Appl. Opt. 47, 3053–3063 (2008).
[CrossRef] [PubMed]

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

Xu, Y.

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

H. L. Graber, Y. Xu, and R. L. Barbour, “Image correction scheme applied to functional diffuse optical tomography scattering images,” Appl. Opt. 46, 1705–1716 (2007).
[CrossRef] [PubMed]

Xydeas, T.

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
[CrossRef] [PubMed]

Yalavarthy, P. K.

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007).
[CrossRef] [PubMed]

Yodh, A. G.

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

Young, D. C.

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

Zhang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

Zheng, Y.

H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
[CrossRef]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

Zhong, S.

Zhu, Q.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

Ziewacz, J. T.

D. G. Russell and J. T. Ziewacz, “Pressures in a simulated breast subjected to compression forces comparable to those of mammography,” Radiology 194, 383–387 (1995).
[PubMed]

Zubkov, L.

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

Zubovits, J.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52, 1565–1576 (2007).
[CrossRef] [PubMed]

Acad. Radiol. (1)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
[CrossRef] [PubMed]

Am. J. Roentgenol. (1)

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, “MR elastography of breast cancer: preliminary results,” Am. J. Roentgenol. 178, 1411–1417 (2002).

Ann. N.Y. Acad. Sci. (1)

S. Thomsen and D. Tatman, “Physiological and pathological factors of human breast disease that can influence optical diagnosis,” Ann. N.Y. Acad. Sci. 838, 171–193 (1998).
[CrossRef] [PubMed]

Appl. Opt. (7)

C. H. Schmitz, H. L. Graber, H. Luo, I. Arif, J. Hira, Y. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S.-L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000).
[CrossRef]

H. L. Graber, Y. Xu, and R. L. Barbour, “Image correction scheme applied to functional diffuse optical tomography scattering images,” Appl. Opt. 46, 1705–1716 (2007).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082–2093 (2005).
[CrossRef] [PubMed]

C. H. Schmitz, D. P. Klemer, R. E. Hardin, M. S. Katz, Y. Pei, H. L. Graber, M. B. Levin, R. D. Levina, N. A. Franco, W. B. Solomon, and R. L. Barbour, “Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements,” Appl. Opt. 44, 2140–2153 (2005).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, A. M. Laughney, C. A. Kogel, and K. D. Paulsen, “Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging,” Appl. Opt. 48, D130–D136 (2009).
[CrossRef] [PubMed]

B. Wang, S. P. Povoski, X. Cao, D. Sun, and R. X. Xu, “Dynamic schema for near infrared detection of pressure-induced changes in solid tumors,” Appl. Opt. 47, 3053–3063 (2008).
[CrossRef] [PubMed]

Y. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40, 5755–5769 (2001).
[CrossRef]

Arch. Surg. (1)

P. S. Wellman, E. P. Dalton, D. Krag, K. A. Kern, and R. D. Howe, “Tactile imaging of breast masses,” Arch. Surg. 136, 204–208(2001).
[CrossRef] [PubMed]

Biophys. J. (1)

R. L. Barbour, H. L. Graber, J. Lubowsky, and R. Aronson, “Monte Carlo (MC) modeling of photon transport in tissue (PTT) V: model for 3-D optical imaging of tissue,” Biophys. J. 57, p. 382a (1990).

Br. J. Cancer (1)

B. Davies, D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill, “Activity of type IV collagenases in benign and malignant breast disease,” Br. J. Cancer 67, 1126–1131 (1993).
[CrossRef] [PubMed]

Breast Cancer Res. (2)

R. X. Xu, D. C. Young, J. J. Mao, and S. P. Povoski, “A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions,” Breast Cancer Res. 9, R88 (2007).
[CrossRef] [PubMed]

A. Evans, P. Whelehan, K. Thomson, D. Mclean, K. Brauer, C. Purdie, L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultrasound elastography: initial experience in solid breast masses,” Breast Cancer Res. 12, R104 (2010).
[CrossRef] [PubMed]

CA Cancer J. Clin. (2)

A. Jemal, R. Siegel, J. Q. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer J. Clin. 60, 277–300 (2010).
[CrossRef] [PubMed]

S. McDonald, D. Saslow, and M. H. Alciati, “Performance and reporting of clinical breast examination: a review of the literature,” CA Cancer J. Clin. 54, 345–361 (2004).
[CrossRef] [PubMed]

Cancer Metastasis Rev. (1)

S. Kumar and V. M. Weaver, “Mechanics, malignancy, and metastasis: the force journey of a tumor cell,” Cancer Metastasis Rev. 28, 113–127 (2009).
[CrossRef] [PubMed]

Cancer Res. (1)

P. Vaupel, F. Kallinowski, and P. Okunieff, “Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Clin. Plast. Surg. (1)

P. Regnault, “Breast ptosis: definition and treatment,” Clin. Plast. Surg. 3, 193–203 (1976).
[PubMed]

Cold Spring Harb. Perspect. Biol. (1)

P. Schedin and P. J. Keely, “Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression,” Cold Spring Harb. Perspect. Biol. 3, a003228 (2011).
[CrossRef]

Curr. Opin. Cell Biol. (1)

M. Egeblad, M. G. Rasch, and V. M. Weaver, “Dynamic interplay between the collagen scaffold and tumor evolution,” Curr. Opin. Cell Biol. 22, 697–706 (2010).
[CrossRef] [PubMed]

Eur. J. Radiol. (1)

A. Athanasiou, D. Vanel, C. Balleyguier, L. Fournier, M. C. Mathieu, S. Delaloge, and C. Dromain, “Dynamic optical breast imaging: a new technique to visualise breast vessels: comparison with breast MRI and preliminary results,” Eur. J. Radiol. 54, 72–79 (2005).
[CrossRef] [PubMed]

IEEE Trans. Med. Imag. (1)

V. Egorov and A. P. Sarvazyan, “Mechanical imaging of the breast,” IEEE Trans. Med. Imag. 27, 1275–1287 (2008).
[CrossRef]

IEEE Trans. Med. Imaging (3)

H. L. Graber, Y. Pei, and R. L. Barbour, “Imaging of spatiotemporal coincident states by DC optical tomography,” IEEE Trans. Med. Imaging 21, 852–866 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. H. Hielscher, A. G. Yodh, and B. Chance, “Diffuse optical tomography of highly heterogeneous media,” IEEE Trans. Med. Imaging 20, 470–478 (2001).
[CrossRef] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28, 30–42 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

S. A. Carp, T. Kauffman, Q. Fang, E. Rafferty, R. Moore, D. Kopans, and D. A. Boas, “Compression-induced changes in the physiological state of the breast as observed through frequency domain photon migration measurements,” J. Biomed. Opt. 11, 064016 (2006).
[CrossRef]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt. 14, 024020 (2009).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt. 9, 541–552(2004).
[CrossRef] [PubMed]

J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, “Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach,” J. Biomed. Opt. 9, 221–229 (2004).
[CrossRef] [PubMed]

J. Gen Physiol. (1)

O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” J. Gen Physiol. 8, 519–530 (1927).
[CrossRef] [PubMed]

J. Natl. Cancer Inst. Monogr. (1)

J. J. Fenton, M. B. Barton, A. M. Geiger, L. J. Herrinton, S. J. Rolnick, E. L. Harris, W. E. Barlow, L. M. Reisch, S. W. Fletcher, and J. G. Elmore, “Screening clinical breast examination: how often does it miss lethal breast cancer?” J. Natl. Cancer Inst. Monogr. 35, 67–71 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Ultrasound Med. (1)

I. Blickstein, R. Goldchmit, S. D. Strano, R. D. Goldman, and N. Barzili, “Echogenicity of fibroadenoma and carcinoma of the breast. Quantitative comparison using gain-assisted densitometric evaluation of sonograms,” J. Ultrasound Med. 14, 661–664 (1995).
[PubMed]

Magn. Reson. Med. (1)

R. Sinkus, K. Siegmann, T. Xydeas, M. Tanter, C. Claussen, and M. Fink, “MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography,” Magn. Reson. Med. 58, 1135–1144 (2007).
[CrossRef] [PubMed]

Med. Image Anal. (2)

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med. Image Anal. 5, 237–254(2001).
[CrossRef] [PubMed]

F. S. Azar, D. N. Metaxas, and M. D. Schnall, “Methods for modeling and predicting mechanical deformation of the breast under external perturbation,” Med. Image Anal. 6, 1–27 (2002).
[CrossRef] [PubMed]

Med. Phys. (2)

D. R. Busch, W. S. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys. 37, 1840–1849 (2010).
[CrossRef] [PubMed]

J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography,” Med. Phys. 37, 3715–3724 (2010).
[CrossRef] [PubMed]

Nat. Rev. Cancer (1)

S. S. Gambhir, “Molecular imaging of cancer with positron emission tomography,” Nat. Rev. Cancer 2, 683–693 (2002).
[CrossRef] [PubMed]

NeuroImage (1)

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” NeuroImage 10, 304–326 (1999).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (5)

T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol. 47, 2847–2861 (2002).
[CrossRef] [PubMed]

H. Dehghani, M. M. Doyley, B. W. Pogue, S. Jiang, J. Geng, and K. D. Paulsen, “Breast deformation modelling for image reconstruction in near infrared optical tomography,” Phys. Med. Biol. 49, 1131–1145 (2004).
[CrossRef] [PubMed]

A. L. Darling, P. K. Yalavarthy, M. M. Doyley, H. Dehghani, and B. W. Pogue, “Interstitial fluid pressure in soft tissue as a result of an externally applied contact pressure,” Phys. Med. Biol. 52, 4121–4136 (2007).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841–853(1997).
[CrossRef] [PubMed]

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52, 1565–1576 (2007).
[CrossRef] [PubMed]

Proc. Inst. Mech. Eng. H (1)

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H 213, 203–233 (1999).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (3)

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. USA 100, 12349–12354 (2003).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. Tosteson, J. B. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. USA 103, 8828–8833 (2006).
[CrossRef] [PubMed]

Proc. SPIE (5)

R. L. Barbour, R. Ansari, R. Al abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, and Y. Xu, “Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms,” Proc. SPIE 6870, 687002 (2008).
[CrossRef]

R. L. Barbour, H. L. Graber, Y. Wang, J. Chang, and R. Aronson, “A perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” Proc. SPIE IS11, 87–120 (1993).

G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical applications of dynamic optical tomography in vascular disease,” Proc. SPIE 4250, 130–141 (2001).
[CrossRef]

Y. Pei, H. L. Graber, and R. L. Barbour, “A fast reconstruction algorithm for implementation of time-series DC optical tomography,” Proc. SPIE 4955, 236–245 (2003).
[CrossRef]

H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near-infrared optical tomographic time series,” Proc. SPIE 4955, 31–51 (2003).
[CrossRef]

Radiographics (1)

E. L. Rosen, W. B. Eubank, and D. A. Mankoff, “FDG PET, PET/CT, and breast cancer imaging,” Radiographics 27, S215–S229 (2007).
[CrossRef]

Radiology (2)

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology 256, 367–378 (2010).
[CrossRef] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology 254, 277–284 (2010).
[CrossRef]

Radiology (1)

D. G. Russell and J. T. Ziewacz, “Pressures in a simulated breast subjected to compression forces comparable to those of mammography,” Radiology 194, 383–387 (1995).
[PubMed]

Ultrason. Imag. (1)

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imag. 15, 73–88 (1993).
[CrossRef]

Ultrasound Med. Biol. (1)

H. Ponnekanti, J. Ophire, and I. Cespedes, “Axial stress distribution between coaxial compressors in elastography: an analytical model,” Ultrasound Med. Biol. 18, 667–673 (1992).
[CrossRef] [PubMed]

Other (8)

J. Sciarretta, “MR validation of soft tissue deformation as modeled by non-linear finite element analysis,” MS thesis (University of Toronto, 2000).

P. Vaupel, “Blood perfusion and microenvironment of human tumors, implications for clinical radiooncology,” in Tumor Blood Flow, M.Molls and P.Vaupel, eds. (Springer, 2000) pp. 41–45.

R. E. Hendrick, “Contrast agents in breast magnetic resonance imaging,” in Breast MRI, Fundamentals and Technical Aspects (Springer, 2008), Chap. 8, pp. 113–134.

C. H. Schmitz, H. L. Graber, and R. L. Barbour, “Peripheral vascular noninvasive measurements,” in Encyclopedia of Medical Devices and Instrumentation, 2nd ed., J.G.Webster, ed. (Wiley-Interscience, 2006), pp. 234–252.

R. L. Barbour, H. L. Graber, C. H. Schmitz, Y. Pei, S. Zhong, S.-L. S. Barbour, S. Blattman, and T. Panetta, “Spatio-temporal imaging of vascular reactivity by optical tomography,” in Proceedings of Inter-Institute Workshop on In Vivo Optical Imaging at the NIH, A.H.Gandjbakhche, ed. (Optical Society of America, 1999) pp. 161–166.

R. M. Christensen, “Viscoelastic stress strain constitutive relations,” in Theory of Viscoelaticity, 2nd ed. (Academic, 1982), Chap. 1, pp. 16–20.

R. Lakes, “Constitutive relations,” in Viscoelastic Materials (Cambridge University, 2009), Chap. 2, pp. 22–26.

R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Model for 3-D optical imaging of tissue,” in Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium (IEEE, 1990), Vol.  2, pp. 1395–1399.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Developed dual-breast articulating imager. (a) Schematic and (b) photograph of imager: laser sources and coupling optics (1), two-stage optical switch (2), illumination and detection fiber optics (3), sensor heads and support arms (4), stepper motor drivers (5), detector modules (6), servo-motor controller (7), host computer (8), and system power supply (9). LD, laser diode.

Fig. 2
Fig. 2

Articulating sensing head. (a) Photograph of the dual-breast sensing head positioned onto a torso phantom; (b) photograph of exposed individual articulating unit; (c) photograph of internal coupling mechanics; (d) functional schematic of the principal design features.

Fig. 3
Fig. 3

GUI of the sensing-head controller. See text for description.

Fig. 4
Fig. 4

Articulation protocol employed for clinical studies. The time-dependent target force of the ML and CC articulation units are identified. Two compression force values, 4.4 and 7.1 N , were applied.

Fig. 5
Fig. 5

Photograph of balloon phantom positioned within sensing head. The phantom contained India Ink and 1% Intralipid; an ECC was placed roughly in the center of the balloon to introduce dynamic changes in the optical properties.

Fig. 6
Fig. 6

FEM used for image reconstructions. Dots identify location of the optodes on the FEM surface.

Fig. 7
Fig. 7

3D reconstructed image of balloon phantom. Axial, sagittal, and coronal cross-sectional images of the normalized PSD at 0.1 Hz computed from the reconstructed image time series of the 830 nm absorption coefficient. Rectangular elements represent the true location of the ECC.

Fig. 8
Fig. 8

Viscoelastic response to applied force. Responses are from a lateral articulation unit in the left sensing head during application of 7.1 N of force. (a) Four phases of the applied protocol, (b) strain–stress relationship of the loading and unloading phases, (c), (d) stress relaxation and stress recovery (dots), respectively, and the corresponding best-fitting solutions to Maxwell’s model (curves). Subject was 44 years old, healthy, with BMI of 23 and size D breasts.

Fig. 9
Fig. 9

Effect of articulation on optical signal. (a) Average displacement of all articulation units in the left sensing head; (b), (c) spatial mean of recovered time-varying total Hb molar concentration, derived from image time series reconstructed from only transmission data (b) or from only backreflection data (c). Plotted results are from the same subject as in Fig. 8.

Fig. 10
Fig. 10

3D image response to applied force (healthy subject, transmission measures). The image is a representation of the applied-force dependence of the HbT concentration. The result is derived (see text for description) from image time series reconstructed from only transmission data. Articulation involved ML compression at 7.1 and 4.4 N . Data were obtained from a 38 year old subject with size D size breasts and BMI of 33.

Fig. 11
Fig. 11

3D image response to applied force (tumor-bearing breast, transmission measures). Result of the same analysis as in Fig. 10 (see text for description) when applied to data obtained from a subject having a right-breast tumor. Articulation involved full compression at 7.1 and 4.4 N . The subject was 40 years old, with size D breasts, and BMI of 37 and had a 12 cm area of diffuse microcalcification (intraductal carcinoma) in the right breast.

Fig. 12
Fig. 12

3D image response to stress relaxation (healthy subject, backreflection measures). The image is a representation of the average rate of change of the HbT concentration during a period of stress relaxation. The result is derived (see text for description) from image time series reconstructed from only backreflection data. Articulation involved full compression at 7.1 N followed by 60 s of stress relaxation. The subject was 44 years old with a BMI of 23 and size D breasts.

Fig. 13
Fig. 13

3D image response to stress relaxation (tumor-bearing breast, backreflection measures). Data analysis and articulation maneuver are the same as in Fig. 12 (see text for description). The subject was 50 years old with a BMI of 44 and size D breasts and had a 4 cm invasive ductal carcinoma at 4 o’clock in the left breast.

Fig. 14
Fig. 14

Sensing domains for breast cancer detection. Optomechanical image shows region of enhanced contrast and tumor location due to applied force.

Tables (5)

Tables Icon

Table 1 Mechanical and Optical Performance of Articulating Breast Imager

Tables Icon

Table 2 Accuracy Measures of Phantom Imaging Studies (Deformation Effects)

Tables Icon

Table 3 Accuracy Measures of Phantom Imaging Studies (Effects of Size and Background Optical Properties)

Tables Icon

Table 4 Sensitivity to Enhanced Stiffness in Tumor-Bearing Breast

Tables Icon

Table 5 Impact of Subject Movement on Optical Signal

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F = E x ,
σ = E x 0 exp ( t τ ) , τ = η E ,
· [ D ( r ) ϕ ( r ) ] μ a ( r ) ϕ ( r ) = δ ( r r s ) , r Λ ,
δ u = W r δ x ,
[ ( u 1 ) i ( u 2 ) i ( u 2 ) i ] ( u r ) i = j ( W r ) i j ( δ x ) j ,
( δ [ HbO ] δ [ HbD ] ) = [ ε HbO 760 ε HbD 760 ε HbO 830 ε HbD 830 ] 1 ( δ μ a 760 δ μ a 830 ) ,

Metrics