Abstract

The most widely used color-difference formulas are based on color-difference data obtained under D65 illumination or similar and for a 10° visual field; i.e., these formulas hold true for the CIE 1964 observer adapted to D65 illuminant. This work considers the psychometric color-vision model based on the Optical Society of America–Uniform Color Scales (OSA-UCS) system previously published by the first author [J. Opt. Soc. Am. A 21, 677 (2004); Color Res. Appl. 30, 31 (2005)] with the additional hypothesis that complete illuminant adaptation with perfect color constancy exists in the visual evaluation of color differences. In this way a computational procedure is defined for color conversion between different illuminant adaptations, which is an alternative to the current chromatic adaptation transforms. This color conversion allows the passage between different observers, e.g., CIE 1964 and CIE 1931. An application of this color conversion is here made in the color-difference evaluation for any observer and in any illuminant adaptation: these transformations convert tristimulus values related to any observer and illuminant adaptation to those related to the observer and illuminant adaptation of the definition of the color-difference formulas, i.e., to the CIE 1964 observer adapted to the D65 illuminant, and then the known color-difference formulas can be applied. The adaptations to the illuminants A, C, F11, D50, Planckian and daylight at any color temperature and for CIE 1931 and CIE 1964 observers are considered as examples, and all the corresponding transformations are given for practical use.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. International Commission on Illumination, “Colorimetry,” 3rd ed., CIE 15:2004 (CIE Central Bureau, 2004), pp. 24, 27.
  2. F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colourists 100, 128–131 (1984).
    [CrossRef]
  3. M. R. Luo and B. Rigg, “BFD(l:c) colour difference formula. Part I: developement of the formula,” J. Soc. Dyers Colourists 103, 86–94 (1987).
    [CrossRef]
  4. M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
    [CrossRef]
  5. G. Cui, M. R. Luo, B. Rigg, G. Rösler, and K. Witt, “Uniform colour spaces based on the DIN99 colour difference formula,” Color Res. Appl. 27, 282–290 (2002).
    [CrossRef]
  6. R. Huertas, M. Melgosa, and C. Oleari, “Performance of a color-difference formula based on OSA-UCS space using small-medium color differences,” J. Opt. Soc. Am. A 23, 2077–2084(2006).
    [CrossRef]
  7. C. Oleari, M. Melgosa, and R. Huertas, “Euclidean color-difference formula for small-medium color differences in log-compressed OSA-UCS space,” J. Opt. Soc. Am. A 26, 121–134(2009).
    [CrossRef]
  8. M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
    [CrossRef]
  9. M. Melgosa, “Request for existing experimental datasets on color differences,” Color Res. Appl. 32, 159 (2007).
    [CrossRef]
  10. International Commission on Illumination, “Parametric effects in colour-difference evaluation,” CIE 101:1993 (CIE Central Bureau, 1993).
  11. D. L. MacAdam, “Uniform color scales,” J. Opt. Soc. Am. 64, 1691–1702 (1974).
    [CrossRef] [PubMed]
  12. D. L. MacAdam, “Colorimetric data for samples of OSA uniform color scales,” J. Opt. Soc. Am. 68, 121–130 (1978).
    [CrossRef]
  13. D. L. MacAdam, Color Measurement (Springer-Verlag, 1985), pp. 165–177.
  14. D. L. MacAdam, “Redetermination of colors for uniform scales,” J. Opt. Soc. Am. A 7, 113–115 (1990).
    [CrossRef] [PubMed]
  15. D. Nickerson, “OSA uniform color samples: a unique set,” Color Res. Appl. 6, 7–33 (1981).
    [CrossRef]
  16. R. W. G. Hunt, “Colour terminology,” Color Res. Appl. 3, 79–87(1978).
    [CrossRef]
  17. International Commission on Illumination, “Recommendations on uniform color spaces, color difference equations, psychometric color terms,” Supplement No. 2 to CIE publication No. 15 Colorimetry (CIE Central Bureau, 1978).
  18. M. D. Fairchild, Color Appearance Models, 2nd ed., Wiley-IS&T Series in Imaging Science and Technology (Wiley, 2005).
  19. International Commission on Illumination, “A review of chromatic adaptation transforms,” CIE 160:2004 (CIE TC1-52, 2003).
  20. C. Oleari, “Color opponencies in the system of the uniform color scales of the Optical Society of America,” J. Opt. Soc. Am. A 21, 677–682 (2004).
    [CrossRef]
  21. C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005).
    [CrossRef]
  22. H. Helson, D. B. Judd, and M. H. Warre, “Object color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).
  23. E. H. Land and J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [CrossRef] [PubMed]
  24. E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
    [CrossRef] [PubMed]
  25. D. H. Brainhard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
    [CrossRef]
  26. D. H. Foster, “Does colour constancy exist?” Trends Cogn. Sci. 7, 439–443 (2003).
    [CrossRef] [PubMed]
  27. H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vision 4, 693–710(2004).
    [CrossRef]
  28. L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [CrossRef] [PubMed]
  29. A. Hurlbert, “Colour vision: is colour constancy real?” Curr. Biol. 9, R558–R561 (1999).
    [CrossRef] [PubMed]
  30. Y. Mizokami, A. Tajima, and H. Yaguchi, “Colour constancy in natural and unnatural images,” in AIC 2011, Interaction of Colour & Light in the Arts and Sciences, Midterm Meeting of the International Color Association, V.M.Schindler and S.Cuber, eds. (Pro/Colore, 2011), pp. 206–209.
  31. C. F. Stromeyer, III, G. R. Cole, and R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
    [CrossRef] [PubMed]
  32. C. F. Stromeyer, III, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
    [CrossRef]
  33. J. A. Worthey, “Limitations of color constancy,” J. Opt. Soc. Am. A 2, 1014–1026 (1985).
    [CrossRef]
  34. M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–227(1986).
    [CrossRef]
  35. I. Kuriki and K. Uchikawa, “Limitations of surface-color and apparent-color constancy,” J. Opt. Soc. Am. A 13, 1622–1636(1996).
    [CrossRef]
  36. J. McCann, “Mechanism of Color Constancy,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications (Society for Imaging Sciences and Technology, 2004), pp. 29–36.
    [PubMed]
  37. M. Ebner, Color Constancy, Wiley IS&T Series in Imaging Science and Technology (Wiley, 2007).
  38. M. Melgosa and E. Hita, “Color differences under illuminants D65 and A,” Optik 107, 5–10 (1997).
  39. H. Helson and W. C. Michels, “The effect of chromatic adaptation on achromaticity,” J. Opt. Soc. Am. 38, 1025–1031 (1948).
    [CrossRef] [PubMed]
  40. G. L. Howett, “Achromatic-point prediction,” J. Opt. Soc. Am. 60, 951–958 (1970).
    [CrossRef] [PubMed]
  41. C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulae for any illuminant and any observer by perfect color-constancy actuation in a color-vision model based on the OSA-UCS system,” presented at the 2nd CIE Expert Symposium on Appearance—When Appearance Meets Lighting, Ghent, Belgium (8–10 September 2010), CIE2010GHENT_Book_of_Abstracts, pp. 43–46.

2011

Y. Mizokami, A. Tajima, and H. Yaguchi, “Colour constancy in natural and unnatural images,” in AIC 2011, Interaction of Colour & Light in the Arts and Sciences, Midterm Meeting of the International Color Association, V.M.Schindler and S.Cuber, eds. (Pro/Colore, 2011), pp. 206–209.

2009

2007

M. Melgosa, “Request for existing experimental datasets on color differences,” Color Res. Appl. 32, 159 (2007).
[CrossRef]

M. Ebner, Color Constancy, Wiley IS&T Series in Imaging Science and Technology (Wiley, 2007).

2006

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

R. Huertas, M. Melgosa, and C. Oleari, “Performance of a color-difference formula based on OSA-UCS space using small-medium color differences,” J. Opt. Soc. Am. A 23, 2077–2084(2006).
[CrossRef]

2005

M. D. Fairchild, Color Appearance Models, 2nd ed., Wiley-IS&T Series in Imaging Science and Technology (Wiley, 2005).

C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005).
[CrossRef]

2004

C. Oleari, “Color opponencies in the system of the uniform color scales of the Optical Society of America,” J. Opt. Soc. Am. A 21, 677–682 (2004).
[CrossRef]

H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vision 4, 693–710(2004).
[CrossRef]

International Commission on Illumination, “Colorimetry,” 3rd ed., CIE 15:2004 (CIE Central Bureau, 2004), pp. 24, 27.

J. McCann, “Mechanism of Color Constancy,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications (Society for Imaging Sciences and Technology, 2004), pp. 29–36.
[PubMed]

2003

D. H. Foster, “Does colour constancy exist?” Trends Cogn. Sci. 7, 439–443 (2003).
[CrossRef] [PubMed]

International Commission on Illumination, “A review of chromatic adaptation transforms,” CIE 160:2004 (CIE TC1-52, 2003).

2002

G. Cui, M. R. Luo, B. Rigg, G. Rösler, and K. Witt, “Uniform colour spaces based on the DIN99 colour difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

2001

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

1999

A. Hurlbert, “Colour vision: is colour constancy real?” Curr. Biol. 9, R558–R561 (1999).
[CrossRef] [PubMed]

C. F. Stromeyer, III, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

1998

1997

M. Melgosa and E. Hita, “Color differences under illuminants D65 and A,” Optik 107, 5–10 (1997).

1996

1993

International Commission on Illumination, “Parametric effects in colour-difference evaluation,” CIE 101:1993 (CIE Central Bureau, 1993).

1990

1987

M. R. Luo and B. Rigg, “BFD(l:c) colour difference formula. Part I: developement of the formula,” J. Soc. Dyers Colourists 103, 86–94 (1987).
[CrossRef]

1986

L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
[CrossRef] [PubMed]

M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–227(1986).
[CrossRef]

1985

J. A. Worthey, “Limitations of color constancy,” J. Opt. Soc. Am. A 2, 1014–1026 (1985).
[CrossRef]

C. F. Stromeyer, III, G. R. Cole, and R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

D. L. MacAdam, Color Measurement (Springer-Verlag, 1985), pp. 165–177.

1984

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colourists 100, 128–131 (1984).
[CrossRef]

1983

E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef] [PubMed]

1981

D. Nickerson, “OSA uniform color samples: a unique set,” Color Res. Appl. 6, 7–33 (1981).
[CrossRef]

1978

R. W. G. Hunt, “Colour terminology,” Color Res. Appl. 3, 79–87(1978).
[CrossRef]

International Commission on Illumination, “Recommendations on uniform color spaces, color difference equations, psychometric color terms,” Supplement No. 2 to CIE publication No. 15 Colorimetry (CIE Central Bureau, 1978).

D. L. MacAdam, “Colorimetric data for samples of OSA uniform color scales,” J. Opt. Soc. Am. 68, 121–130 (1978).
[CrossRef]

1974

1971

1970

1952

H. Helson, D. B. Judd, and M. H. Warre, “Object color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

1948

Brainhard, D. H.

Brill, M. H.

M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–227(1986).
[CrossRef]

Chaparro, A.

C. F. Stromeyer, III, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

Clarke, F. J. J.

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colourists 100, 128–131 (1984).
[CrossRef]

Cole, G. R.

C. F. Stromeyer, III, G. R. Cole, and R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

Cui, G.

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

G. Cui, M. R. Luo, B. Rigg, G. Rösler, and K. Witt, “Uniform colour spaces based on the DIN99 colour difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Ebner, M.

M. Ebner, Color Constancy, Wiley IS&T Series in Imaging Science and Technology (Wiley, 2007).

Fairchild, M. D.

M. D. Fairchild, Color Appearance Models, 2nd ed., Wiley-IS&T Series in Imaging Science and Technology (Wiley, 2005).

Foster, D. H.

D. H. Foster, “Does colour constancy exist?” Trends Cogn. Sci. 7, 439–443 (2003).
[CrossRef] [PubMed]

Gowdy, P. D.

C. F. Stromeyer, III, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

Helson, H.

H. Helson, D. B. Judd, and M. H. Warre, “Object color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

H. Helson and W. C. Michels, “The effect of chromatic adaptation on achromaticity,” J. Opt. Soc. Am. 38, 1025–1031 (1948).
[CrossRef] [PubMed]

Hita, E.

M. Melgosa and E. Hita, “Color differences under illuminants D65 and A,” Optik 107, 5–10 (1997).

Howett, G. L.

Huertas, R.

C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulae for any illuminant and any observer by perfect color-constancy actuation in a color-vision model based on the OSA-UCS system,” presented at the 2nd CIE Expert Symposium on Appearance—When Appearance Meets Lighting, Ghent, Belgium (8–10 September 2010), CIE2010GHENT_Book_of_Abstracts, pp. 43–46.

C. Oleari, M. Melgosa, and R. Huertas, “Euclidean color-difference formula for small-medium color differences in log-compressed OSA-UCS space,” J. Opt. Soc. Am. A 26, 121–134(2009).
[CrossRef]

R. Huertas, M. Melgosa, and C. Oleari, “Performance of a color-difference formula based on OSA-UCS space using small-medium color differences,” J. Opt. Soc. Am. A 23, 2077–2084(2006).
[CrossRef]

Hunt, R. W. G.

R. W. G. Hunt, “Colour terminology,” Color Res. Appl. 3, 79–87(1978).
[CrossRef]

Hurlbert, A.

A. Hurlbert, “Colour vision: is colour constancy real?” Curr. Biol. 9, R558–R561 (1999).
[CrossRef] [PubMed]

Judd, D. B.

H. Helson, D. B. Judd, and M. H. Warre, “Object color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

Kronauer, R. E.

C. F. Stromeyer, III, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

C. F. Stromeyer, III, G. R. Cole, and R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

Kuriki, I.

Land, E. H.

E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef] [PubMed]

E. H. Land and J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

Li, C.

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

Luo, M. R.

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

G. Cui, M. R. Luo, B. Rigg, G. Rösler, and K. Witt, “Uniform colour spaces based on the DIN99 colour difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

M. R. Luo and B. Rigg, “BFD(l:c) colour difference formula. Part I: developement of the formula,” J. Soc. Dyers Colourists 103, 86–94 (1987).
[CrossRef]

MacAdam, D. L.

Maloney, L. T.

McCann, J.

J. McCann, “Mechanism of Color Constancy,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications (Society for Imaging Sciences and Technology, 2004), pp. 29–36.
[PubMed]

E. H. Land and J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

McDonald, R.

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colourists 100, 128–131 (1984).
[CrossRef]

Melgosa, M.

C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulae for any illuminant and any observer by perfect color-constancy actuation in a color-vision model based on the OSA-UCS system,” presented at the 2nd CIE Expert Symposium on Appearance—When Appearance Meets Lighting, Ghent, Belgium (8–10 September 2010), CIE2010GHENT_Book_of_Abstracts, pp. 43–46.

C. Oleari, M. Melgosa, and R. Huertas, “Euclidean color-difference formula for small-medium color differences in log-compressed OSA-UCS space,” J. Opt. Soc. Am. A 26, 121–134(2009).
[CrossRef]

M. Melgosa, “Request for existing experimental datasets on color differences,” Color Res. Appl. 32, 159 (2007).
[CrossRef]

R. Huertas, M. Melgosa, and C. Oleari, “Performance of a color-difference formula based on OSA-UCS space using small-medium color differences,” J. Opt. Soc. Am. A 23, 2077–2084(2006).
[CrossRef]

M. Melgosa and E. Hita, “Color differences under illuminants D65 and A,” Optik 107, 5–10 (1997).

Michels, W. C.

Mizokami, Y.

Y. Mizokami, A. Tajima, and H. Yaguchi, “Colour constancy in natural and unnatural images,” in AIC 2011, Interaction of Colour & Light in the Arts and Sciences, Midterm Meeting of the International Color Association, V.M.Schindler and S.Cuber, eds. (Pro/Colore, 2011), pp. 206–209.

Nickerson, D.

D. Nickerson, “OSA uniform color samples: a unique set,” Color Res. Appl. 6, 7–33 (1981).
[CrossRef]

Oleari, C.

C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulae for any illuminant and any observer by perfect color-constancy actuation in a color-vision model based on the OSA-UCS system,” presented at the 2nd CIE Expert Symposium on Appearance—When Appearance Meets Lighting, Ghent, Belgium (8–10 September 2010), CIE2010GHENT_Book_of_Abstracts, pp. 43–46.

C. Oleari, M. Melgosa, and R. Huertas, “Euclidean color-difference formula for small-medium color differences in log-compressed OSA-UCS space,” J. Opt. Soc. Am. A 26, 121–134(2009).
[CrossRef]

R. Huertas, M. Melgosa, and C. Oleari, “Performance of a color-difference formula based on OSA-UCS space using small-medium color differences,” J. Opt. Soc. Am. A 23, 2077–2084(2006).
[CrossRef]

C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005).
[CrossRef]

C. Oleari, “Color opponencies in the system of the uniform color scales of the Optical Society of America,” J. Opt. Soc. Am. A 21, 677–682 (2004).
[CrossRef]

Rigg, B.

G. Cui, M. R. Luo, B. Rigg, G. Rösler, and K. Witt, “Uniform colour spaces based on the DIN99 colour difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

M. R. Luo and B. Rigg, “BFD(l:c) colour difference formula. Part I: developement of the formula,” J. Soc. Dyers Colourists 103, 86–94 (1987).
[CrossRef]

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colourists 100, 128–131 (1984).
[CrossRef]

Rösler, G.

G. Cui, M. R. Luo, B. Rigg, G. Rösler, and K. Witt, “Uniform colour spaces based on the DIN99 colour difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

Smithson, H.

H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vision 4, 693–710(2004).
[CrossRef]

Stromeyer, C. F.

C. F. Stromeyer, III, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

C. F. Stromeyer, III, G. R. Cole, and R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

Tajima, A.

Y. Mizokami, A. Tajima, and H. Yaguchi, “Colour constancy in natural and unnatural images,” in AIC 2011, Interaction of Colour & Light in the Arts and Sciences, Midterm Meeting of the International Color Association, V.M.Schindler and S.Cuber, eds. (Pro/Colore, 2011), pp. 206–209.

Uchikawa, K.

Wandell, B. A.

Warre, M. H.

H. Helson, D. B. Judd, and M. H. Warre, “Object color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

West, G.

M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–227(1986).
[CrossRef]

Witt, K.

G. Cui, M. R. Luo, B. Rigg, G. Rösler, and K. Witt, “Uniform colour spaces based on the DIN99 colour difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

Worthey, J. A.

Yaguchi, H.

Y. Mizokami, A. Tajima, and H. Yaguchi, “Colour constancy in natural and unnatural images,” in AIC 2011, Interaction of Colour & Light in the Arts and Sciences, Midterm Meeting of the International Color Association, V.M.Schindler and S.Cuber, eds. (Pro/Colore, 2011), pp. 206–209.

Zaidi, Q.

H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vision 4, 693–710(2004).
[CrossRef]

Color Res. Appl.

M. R. Luo, G. Cui, and B. Rigg, “The development of CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

G. Cui, M. R. Luo, B. Rigg, G. Rösler, and K. Witt, “Uniform colour spaces based on the DIN99 colour difference formula,” Color Res. Appl. 27, 282–290 (2002).
[CrossRef]

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31, 320–330 (2006).
[CrossRef]

M. Melgosa, “Request for existing experimental datasets on color differences,” Color Res. Appl. 32, 159 (2007).
[CrossRef]

D. Nickerson, “OSA uniform color samples: a unique set,” Color Res. Appl. 6, 7–33 (1981).
[CrossRef]

R. W. G. Hunt, “Colour terminology,” Color Res. Appl. 3, 79–87(1978).
[CrossRef]

C. Oleari, “Hypotheses for chromatic opponency functions and their performance on classical psychophysical data,” Color Res. Appl. 30, 31–41 (2005).
[CrossRef]

M. H. Brill and G. West, “Chromatic adaptation and color constancy: a possible dichotomy,” Color Res. Appl. 11, 196–227(1986).
[CrossRef]

Curr. Biol.

A. Hurlbert, “Colour vision: is colour constancy real?” Curr. Biol. 9, R558–R561 (1999).
[CrossRef] [PubMed]

Illum. Eng.

H. Helson, D. B. Judd, and M. H. Warre, “Object color changes from daylight to incandescent filament illumination,” Illum. Eng. 47, 221–233 (1952).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Soc. Dyers Colourists

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colourists 100, 128–131 (1984).
[CrossRef]

M. R. Luo and B. Rigg, “BFD(l:c) colour difference formula. Part I: developement of the formula,” J. Soc. Dyers Colourists 103, 86–94 (1987).
[CrossRef]

J. Vision

H. Smithson and Q. Zaidi, “Colour constancy in context: roles for local adaptation and levels of reference,” J. Vision 4, 693–710(2004).
[CrossRef]

Optik

M. Melgosa and E. Hita, “Color differences under illuminants D65 and A,” Optik 107, 5–10 (1997).

Proc. Natl. Acad. Sci. USA

E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and natural image,” Proc. Natl. Acad. Sci. USA 80, 5163–5169 (1983).
[CrossRef] [PubMed]

Trends Cogn. Sci.

D. H. Foster, “Does colour constancy exist?” Trends Cogn. Sci. 7, 439–443 (2003).
[CrossRef] [PubMed]

Vision Res.

C. F. Stromeyer, III, G. R. Cole, and R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef] [PubMed]

C. F. Stromeyer, III, P. D. Gowdy, A. Chaparro, and R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

Other

Y. Mizokami, A. Tajima, and H. Yaguchi, “Colour constancy in natural and unnatural images,” in AIC 2011, Interaction of Colour & Light in the Arts and Sciences, Midterm Meeting of the International Color Association, V.M.Schindler and S.Cuber, eds. (Pro/Colore, 2011), pp. 206–209.

J. McCann, “Mechanism of Color Constancy,” in Twelfth Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications (Society for Imaging Sciences and Technology, 2004), pp. 29–36.
[PubMed]

M. Ebner, Color Constancy, Wiley IS&T Series in Imaging Science and Technology (Wiley, 2007).

International Commission on Illumination, “Parametric effects in colour-difference evaluation,” CIE 101:1993 (CIE Central Bureau, 1993).

International Commission on Illumination, “Colorimetry,” 3rd ed., CIE 15:2004 (CIE Central Bureau, 2004), pp. 24, 27.

D. L. MacAdam, Color Measurement (Springer-Verlag, 1985), pp. 165–177.

International Commission on Illumination, “Recommendations on uniform color spaces, color difference equations, psychometric color terms,” Supplement No. 2 to CIE publication No. 15 Colorimetry (CIE Central Bureau, 1978).

M. D. Fairchild, Color Appearance Models, 2nd ed., Wiley-IS&T Series in Imaging Science and Technology (Wiley, 2005).

International Commission on Illumination, “A review of chromatic adaptation transforms,” CIE 160:2004 (CIE TC1-52, 2003).

C. Oleari, M. Melgosa, and R. Huertas, “Generalization of color-difference formulae for any illuminant and any observer by perfect color-constancy actuation in a color-vision model based on the OSA-UCS system,” presented at the 2nd CIE Expert Symposium on Appearance—When Appearance Meets Lighting, Ghent, Belgium (8–10 September 2010), CIE2010GHENT_Book_of_Abstracts, pp. 43–46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Coordinates of the points A, B, C, and N for the CIE64 observer related to the adaptation produced by the Planckian illuminant at color temperatures T c = 2500 , 3000 , 3500 , , 7000 , 7500 , 8000 K .

Fig. 2
Fig. 2

Coordinates of the points A, B, C, and N for the CIE64 observer related to the adaptation produced by the daylight illuminant at correlated color temperatures CCT = 4000 , 4500 , 5000 , 5500 , 6000 , 6500 , 7000 , 7500 , 8000 K .

Fig. 3
Fig. 3

Δ E 00 histograms obtained on the 1324 color patches of the Munsell atlas related to the use of the color conversion made by (left) matrix Eq. (13) and by (right) CAT02.

Tables (2)

Tables Icon

Table 1 Values of Δ E E and CIEDE2000 Averaged over the 99 SG ColorChecker Samples Obtained by Comparing Measured Data and Computed Data for the CIE Observers Adapted to the Planckian Illuminants with Color Temperature 2500 T c 8000 K a

Tables Icon

Table 2 Values of Δ E E and CIEDE2000 Averaged over the 99 SG ColorChecker Samples Obtained by Comparing Measured Data and Computed Data for the CIE Observers Adapted to the Daylight Illuminants with Correlated Color Temperature 4000 CCT 8000 K a

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

( A B C ) = T ( L M S ) = [ T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33 ] ( L M S ) ,
ln ( A B ) , ln ( B C ) , ln ( C A ) .
( A B C ) = T CIE 64 , D 65 ( L M S ) CIE 64 , D 65 = T O , S ( L M S ) O , S .
( A B C ) = T O , S ( L M S ) O , S A O , S P O ( L M S ) O , S A O , S ( X Y Z ) O , S ,
( A B C ) = A CIE 64 , D 65 P CIE 64 ( L M S ) CIE 64 , D 65 = A CIE 64 , D 65 ( X 10 Y 10 Z 10 ) CIE 64 , D 65 = A O , S P O ( L M S ) O , S = A O , S ( X Y Z ) O , S .
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = A CIE 64 , D 65 1 A O , S ( X Y Z ) O , S T O , S CIE 64 , D 65 ( X Y Z ) O , S ,
A CIE 64 , D 65 = [ 0.6597 0.4492 0.1089 0.3053 1.2126 0.0927 0.0374 0.4795 0.5579 ]
RMS = 1 99 i = 1 99 ( Δ E i ) 2 ,
Δ E i = { [ ln ( A i , O , S B i , O , S ) ln ( A i , CIE 64 , D 65 B i , CIE 64 , D 65 ) ] 2 + [ ln ( B i , O , S C i , O , S ) ln ( B i , CIE 64 , D 65 C i , CIE 64 , D 65 ) ] 2 + [ ln ( C i , O , S A i , O , S ) ln ( C i , CIE 64 , D 65 A i , CIE 64 , D 65 ) ] 2 } 1 / 2
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 64 , A CIE 64 , D 65 ( X 10 Y 10 Z 10 ) CIE 64 , A = [ 0.5033 0.2336 0.3566 0.3033 1.2445 0.2098 0.1072 0.1573 3.0382 ] ( X 10 Y 10 Z 10 ) CIE 64 , A ,
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 64 , C CIE 64 , D 65 ( X 10 Y 10 Z 10 ) CIE 64 , C = [ 1.0637 0.0370 0.0109 0.0237 1.0135 0.0005 0.0254 0.0253 0.9591 ] ( X 10 Y 10 Z 10 ) CIE 64 , C ,
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 64 , F 11 CIE 64 , D 65 ( X 10 Y 10 Z 10 ) CIE 64 , F 11 = [ 0.9225 0.0993 0.1181 0.0052 0.9080 0.1168 0.0772 0.0612 1.5599 ] ( X 10 Y 10 Z 10 ) CIE 64 , F 11 ,
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 64 , D 50 CIE 64 , D 65 ( X 10 Y 10 Z 10 ) CIE 64 , D 50 = [ 0.8879 0.0413 0.0729 0.0722 1.0580 0.0331 0.0444 0.0562 1.3482 ] ( X 10 Y 10 Z 10 ) CIE 64 , D 50 ,
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 31 , A CIE 64 , D 65 ( X Y Z ) CIE 31 , A = [ 0.4101 0.3447 0.3399 0.2964 1.2137 0.2706 0.1183 0.1819 3.0050 ] ( X Y Z ) CIE 31 , A ,
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 31 , C CIE 64 , D 65 ( X Y Z ) CIE 31 , C = [ 0.9174 0.1050 0.0093 0.0228 1.0250 0.0437 0.0452 0.0515 0.9497 ] ( X Y Z ) CIE 31 , C ,
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 31 , F 11 CIE 64 , D 65 ( X Y Z ) CIE 31 , F 11 = [ 0.8309 0.0157 0.1035 0.0094 0.8853 0.1439 0.0884 0.0733 1.5553 ] ( X Y Z ) CIE 31 , F 11 ,
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 31 , D 50 CIE 64 , D 65 ( X Y Z ) CIE 31 , D 50 = [ 0.7655 0.1658 0.0705 0.0971 1.0522 0.0809 0.0651 0.0854 1.3354 ] ( X Y Z ) CIE 31 , D 50 ,
( X 10 Y 10 Z 10 ) CIE 64 , D 65 = T CIE 31 , D 65 CIE 64 , D 65 ( X Y Z ) CIE 31 , D 65 = [ 0.8909 0.1062 0.0013 0.0187 0.9849 0.0425 0.0409 0.0489 0.9932 ] ( X Y Z ) CIE 31 , D 65 .
T CIE 31 , P T CIE 64 , D 65 = [ t 11 ( t ) t 12 ( t ) t 13 ( t ) t 21 ( t ) t 22 ( t ) t 23 ( t ) t 31 ( t ) t 32 ( t ) t 33 ( t ) ] ,
t 11 ( t ) = 0.3352 + 3.2849 t 2.1010 t 2 , RMS = 0.030 ; t 12 ( t ) = 0.7872 2.0294 t + 1.4156 t 2 , RMS = 0.031 ; t 13 ( t ) = 0.16 + ( 1.6922 + 13.0688 t 0.9485 t 2 ) 1 , RMS = 0.009 ; t 21 ( t ) = 0.7329 + 1.9264 t 1.2103 t 2 , RMS = 0.019 ; t 22 ( t ) = 1.6334 1.8833 t + 1.2583 t 2 , RMS = 0.037 ; t 23 ( t ) = 0.04 + ( 4.1279 + 26.1611 t 2.1565 t 2 ) 1 , RMS = 0.008 ; t 31 ( t ) = 0.08 + ( 0.8129 + 15.5929 t 7.1356 t 2 ) 1 , RMS = 0.012 ; t 32 ( t ) = 0.08 ( 1.1344 + 18.6290 t 7.9995 t 2 ) 1 , RMS = 0.016 ; t 33 ( t ) = 0.21 + ( 0.5269 + 3.2939 t 0.6501 t 2 ) 1 , RMS = 0.045 ;
T CIE 64 , P T CIE 64 , D 65 = [ t 11 ( t ) t 12 ( t ) t 13 ( t ) t 21 ( t ) t 22 ( t ) t 23 ( t ) t 31 ( t ) t 32 ( t ) t 33 ( t ) ] ,
t 11 ( t ) = 0.3751 + 3.8749 t 2.6142 t 2 , RMS = 0.023 ; t 12 ( t ) = 0.7471 2.3421 t + 1.7155 t 2 , RMS = 0.025 ; t 13 ( t ) = 0.19 + ( 1.3154 + 11.3964 t 1.5829 t 2 ) 1 , RMS = 0.002 ; t 21 ( t ) = 0.8308 + 2.3171 t 1.5120 t 2 , RMS = 0.018 ; t 22 ( t ) = 1.7045 2.0415 t + 1.3647 t 2 , RMS = 0.041 ; t 23 ( t ) = 0.09 + ( 3.8862 + 27.2429 t 7.4061 t 2 ) 1 , RMS = 0.002 ; t 31 ( t ) = 0.22622 0.6007 t + 0.3280 t 2 , RMS = 0.011 ; t 32 ( t ) = 0.4266 + 1.0841 t 0.6706 t 2 , RMS = 0.015 ; t 33 ( t ) = 0.21 + ( 0.4656 + 2.9864 t 0.3574 t 2 ) 1 , RMS = 0.031 ;
T CIE 31 , D T CIE 64 , D 65 = [ t 11 ( t ) t 12 ( t ) t 13 ( t ) t 21 ( t ) t 22 ( t ) t 23 ( t ) t 31 ( t ) t 32 ( t ) t 33 ( t ) ] ,
t 11 ( t ) = 0.3304 + 3.1004 t 1.8979 t 2 , RMS = 0.018 ; t 12 ( t ) = 0.7808 1.8230 t + 1.1902 t 2 , RMS = 0.010 ; t 13 ( t ) = 0.7535 1.9835 t + 1.2598 t 2 , RMS = 0.006 ; t 21 ( t ) = 0.7491 + 1.8667 t 1.1305 t 2 , RMS = 0.007 ; t 22 ( t ) = 1.6571 1.8096 t + 1.1386 t 2 , RMS = 0.029 ; t 23 ( t ) = 0.4827 1.1760 t + 0.7578 t 2 , RMS = 0.004 ; t 31 ( t ) = 0.2249 0.5064 t + 0.2822 t 2 , RMS = 0.003 ; t 32 ( t ) = 0.4107 + 0.9225 t 0.5580 t 2 , RMS = 0.003 ; t 33 ( t ) = 5.1759 11.3538 t + 7.4451 t 2 , RMS = 0.055 ;
T CIE 64 , D T CIE 64 , D 65 = [ t 11 ( t ) t 12 ( t ) t 13 ( t ) t 21 ( t ) t 22 ( t ) t 23 ( t ) t 31 ( t ) t 32 ( t ) t 33 ( t ) ] ,
t 11 ( t ) = 0.1925 + 2.9540 t 1.6971 t 2 , RMS = 0.029 ; t 12 ( t ) = 0.6010 1.6179 t + 1.0443 t 2 , RMS = 0.006 ; t 13 ( t ) = 0.7930 2.0867 t + 1.3195 t 2 , RMS = 0.006 ; t 21 ( t ) = 0.7394 + 1.8605 t 1.0914 t 2 , RMS = 0.006 ; t 22 ( t ) = 1.6395 1.7366 t + 1.1337 t 2 , RMS = 0.023 ; t 23 ( t ) = 0.3888 1.0369 t + 0.6669 t 2 , RMS = 0.003 ; t 31 ( t ) = 0.3171 0.7782 t + 0.4539 t 2 , RMS = 0.006 ; t 32 ( t ) = 0.4692 + 1.1987 t 0.7377 t 2 , RMS = 0.007 ; t 33 ( t ) = 5.2772 11.6427 t + 7.6995 t 2 , RMS = 0.055 ;

Metrics