Abstract

We analyze the resolution properties of nonlinear optical microscopy systems that use nonlinear optical effects, such as multiphoton-excited fluorescence, second- and third-harmonic generation, coherent anti-Stokes Raman scattering, and stimulated-emission depletion. Image formation formulas are presented that unitedly describe the properties of the image observed, wherein coherent, incoherent, or mixed-coherent phenomena are utilized. We develop the formalism for the optical resolution of all types of nonlinear systems. The properties of image formation represented by the transmission cross-coefficient are different depending on the type of nonlinear systems.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
    [CrossRef]
  3. E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
    [CrossRef]
  4. I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett. 11, 94–96 (1986).
    [CrossRef]
  5. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
    [CrossRef]
  6. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
    [CrossRef]
  7. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
    [CrossRef]
  8. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
    [CrossRef]
  9. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982).
    [CrossRef]
  10. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  11. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef]
  12. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
    [CrossRef]
  13. C. J. R. Sheppard, M. Gu, Y. Kawata, and S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
    [CrossRef]
  14. M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses,” J. Opt. Soc. Am. A 9, 1991–1999 (1992).
    [CrossRef]
  15. S. Kawata, R. Arimoto, and O. Nakamura, “Three-dimensional optical-transfer-function analysis for a laser-scan fluorescence microscope with an extended detector,” J. Opt. Soc. Am. A 8, 171–175 (1991).
    [CrossRef]
  16. M. Gu and D. Bird, “Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy,” J. Opt. Soc. Am. A 20, 941–947 (2003).
    [CrossRef]
  17. M. Hashimoto and T. Araki, “Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. A 18, 771–776 (2001).
    [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).
  19. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  20. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
  21. M. Gu and C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
    [CrossRef]
  22. C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik (Stuttgart) 100, 155–158 (1995).
  23. C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear optical spectroscopy of single, few, and many molecules: Nonequilibrium Green’s function QED approach,” Phys. Rev. A 77, 022110 (2008).
    [CrossRef]
  24. J. Squier and M. Mueller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
    [CrossRef]
  25. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
    [CrossRef]

2008 (2)

C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear optical spectroscopy of single, few, and many molecules: Nonequilibrium Green’s function QED approach,” Phys. Rev. A 77, 022110 (2008).
[CrossRef]

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[CrossRef]

2007 (1)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

M. Gu and D. Bird, “Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy,” J. Opt. Soc. Am. A 20, 941–947 (2003).
[CrossRef]

2001 (5)

M. Hashimoto and T. Araki, “Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. A 18, 771–776 (2001).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
[CrossRef]

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

J. Squier and M. Mueller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

1998 (1)

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

1997 (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

1996 (1)

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

1995 (1)

C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik (Stuttgart) 100, 155–158 (1995).

1994 (4)

C. J. R. Sheppard, M. Gu, Y. Kawata, and S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
[CrossRef]

M. Gu and C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
[CrossRef]

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef]

1992 (1)

1991 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

1986 (1)

1982 (1)

1974 (1)

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).

Araki, T.

Arimoto, R.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Bird, D.

Born, M.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).

Brakenhoff, G. J.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

Campagnola, P. J.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Clark, H. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Deutsch, M.

Duncan, M. D.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Freund, I.

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Gu, M.

M. Gu and D. Bird, “Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy,” J. Opt. Soc. Am. A 20, 941–947 (2003).
[CrossRef]

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik (Stuttgart) 100, 155–158 (1995).

C. J. R. Sheppard, M. Gu, Y. Kawata, and S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
[CrossRef]

M. Gu and C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
[CrossRef]

M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses,” J. Opt. Soc. Am. A 9, 1991–1999 (1992).
[CrossRef]

Harbola, U.

C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear optical spectroscopy of single, few, and many molecules: Nonequilibrium Green’s function QED approach,” Phys. Rev. A 77, 022110 (2008).
[CrossRef]

Harke, B.

Hashimoto, M.

Hell, S. W.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008).
[CrossRef]

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef]

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Kawata, S.

Kawata, Y.

Keller, J.

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Lewis, A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Lindek, S.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Loew, L. M.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Manuccia, T. J.

Marx, C. A.

C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear optical spectroscopy of single, few, and many molecules: Nonequilibrium Green’s function QED approach,” Phys. Rev. A 77, 022110 (2008).
[CrossRef]

Mertz, J.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

Moreaux, L.

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
[CrossRef]

Mueller, M.

J. Squier and M. Mueller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
[CrossRef]

Mukamel, S.

C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear optical spectroscopy of single, few, and many molecules: Nonequilibrium Green’s function QED approach,” Phys. Rev. A 77, 022110 (2008).
[CrossRef]

Muller, M.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

Nakamura, O.

Pick, R.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Reintjes, J.

Ritter, G.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Salmon, N.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Schönle, A.

Sheppard, C. J. R.

C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik (Stuttgart) 100, 155–158 (1995).

C. J. R. Sheppard, M. Gu, Y. Kawata, and S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994).
[CrossRef]

M. Gu and C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
[CrossRef]

M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses,” J. Opt. Soc. Am. A 9, 1991–1999 (1992).
[CrossRef]

Silberberg, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

Squier, J.

J. Squier and M. Mueller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
[CrossRef]

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

Stelzer, E. H. K.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Storz, C.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Stricker, R.

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Ullal, C. K.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Westphal, V.

Wichmann, J.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

Wilson, K. R.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).

Wong, A. K.

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Xie, X. S.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997).
[CrossRef]

J. Biomed. Opt. (1)

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001).
[CrossRef]

J. Microsc. (1)

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef]

J. Mod. Opt. (1)

M. Gu and C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994).
[CrossRef]

J. Opt. Soc. Am. A (5)

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003).
[CrossRef]

Opt. Commun. (2)

E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994).
[CrossRef]

J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Optik (Stuttgart) (1)

C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik (Stuttgart) 100, 155–158 (1995).

Phys. Rev. A (1)

C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear optical spectroscopy of single, few, and many molecules: Nonequilibrium Green’s function QED approach,” Phys. Rev. A 77, 022110 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Squier and M. Mueller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef]

Other (3)

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics