Abstract

Fluorescence lifetime imaging microscopy is used widely in biological research, but the accuracy and precision of lifetime measurements are limited. Photon noise is an inherent error source that cannot be eliminated. In this paper, we present a general approach to compute the probability density of the estimated lifetime for frequency-domain fluorescence lifetime imaging microscopy using homodyne lock-in detection. The analysis for commonly used excitation methods, including sinusoidal modulation, square-wave modulation, and a periodically pulsed light source, are given and compared to the results of Monte Carlo simulations. The optimum parameters of the excitation waveforms to minimize the variance of the estimated lifetimes are also derived and compared to previously published results.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (78)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription