Abstract

Adaptive optics (AO) retinal images are limited by anisoplanatism; wavefront shape varies across the field of view such that only a limited area can achieve diffraction-limited image quality at one time. We explored three alternative AO modalities designed to reduce this effect, drawn from work in astronomy. Optical design analysis and computer modeling was undertaken to predict the benefit of each modality for various schematic eyes and various complexities of the imaging system. Off-axis performance was found to be limited by system parameters and not by the eye itself, due to the inherent off-axis characteristics of the eye’s gradient index lens. This rendered the alternative AO modalities ineffectual compared with conventional AO but did suggest several methods by which anisoplanatism may be reduced by altering the design of conventional AO systems. Several of these design possibilities were explored with further modeling. The best-performing method involved the replacement of system lenses with gradient index versions inspired by the human eye lens. Mirror-based relay optics also demonstrated good off-axis performance, but their advantage was lost in regions of the system suffering from uncorrected higher-order aberration. Incorporating “off-the-plane” beam deviations ameliorated this loss substantially. In this work we also show, to our knowledge for the first time, that the ideal location of a single AO corrector need not lie in the pupil plane.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [CrossRef]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  3. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A 72, 52–61 (1982).
    [CrossRef]
  4. P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
    [CrossRef] [PubMed]
  5. E. M. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” (http://wwwcfao.ucolick.org/EO//internshipsnew/mainland/posters/erika.pdf, 2004).
  6. J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” (http://vision.berkeley.edu/wildsoet/Arvo2006/Isoplanatic%20Patch_Janice_Austin.pdf, 2006).
  7. D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
    [CrossRef]
  8. A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE 5894, 88–94 (2005).
  9. A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE 6138, 260–266 (2006).
  10. P. A. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
    [CrossRef] [PubMed]
  11. R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
    [CrossRef]
  12. J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of ESO Conference on Very Large Telescopes and Their Instrumentation (European Southern Observatory, 1988), 693–703.
  13. D. C. Johnston and B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994).
    [CrossRef]
  14. M. Tallon and R. Foy, “Adaptive telescope with laser probe: isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).
  15. J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express 17, 4454–4467 (2009).
    [CrossRef] [PubMed]
  16. A. Tokovinin, “Seeing improvement with ground-layer adaptive optics,” Publ. Astron. Soc. Pac. 116, 941–951 (2004).
    [CrossRef]
  17. P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [CrossRef]
  18. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
    [CrossRef]
  19. G. Smith and D. A. Atchison, “The gradient index and spherical aberration of the lens of the human eye,” Appl. Opt. 21, 317–326 (2001).
  20. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vision Sci. 85, 330–340 (2008).
    [CrossRef]
  21. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [PubMed]
  22. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [CrossRef] [PubMed]
  23. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A 14, 1684–1694 (1997).
    [CrossRef]
  24. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157–2174 (2007).
    [CrossRef]
  25. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
    [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).
  27. A. V. Goncharov, J. C. Dainty, S. Esposito, and A. Puglisi, “Laboratory MCAO test-bed for developing wavefront sensing concepts,” Opt. Express 13, 5580–5590 (2005).
    [CrossRef] [PubMed]
  28. B. L. Ellerbroek, “Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques,” J. Opt. Soc. Am. A 19, 1803–1816 (2002).
    [CrossRef]
  29. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17, 18906–18919 (2009).
    [CrossRef]
  30. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
    [CrossRef]
  31. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  32. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
    [CrossRef]
  33. G. Smith and D. Atchison, The Eye and Visual Optical Instruments (Cambridge Univ. Press, 1997).
    [CrossRef]
  34. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
    [PubMed]
  35. P. Bedggood, “Adaptive optics methods to increase the isoplanatic patch size for human retinal imaging,” Ph.D. dissertation (University of Melbourne, 2008).
  36. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]

2009 (2)

2008 (3)

P. Bedggood, “Adaptive optics methods to increase the isoplanatic patch size for human retinal imaging,” Ph.D. dissertation (University of Melbourne, 2008).

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vision Sci. 85, 330–340 (2008).
[CrossRef]

P. A. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (4)

P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[CrossRef] [PubMed]

J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” (http://vision.berkeley.edu/wildsoet/Arvo2006/Isoplanatic%20Patch_Janice_Austin.pdf, 2006).

D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
[CrossRef]

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE 6138, 260–266 (2006).

2005 (2)

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE 5894, 88–94 (2005).

A. V. Goncharov, J. C. Dainty, S. Esposito, and A. Puglisi, “Laboratory MCAO test-bed for developing wavefront sensing concepts,” Opt. Express 13, 5580–5590 (2005).
[CrossRef] [PubMed]

2004 (3)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

E. M. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” (http://wwwcfao.ucolick.org/EO//internshipsnew/mainland/posters/erika.pdf, 2004).

A. Tokovinin, “Seeing improvement with ground-layer adaptive optics,” Publ. Astron. Soc. Pac. 116, 941–951 (2004).
[CrossRef]

2002 (4)

2001 (3)

1999 (1)

1998 (1)

1997 (3)

1994 (1)

1990 (1)

M. Tallon and R. Foy, “Adaptive telescope with laser probe: isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).

1988 (1)

J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of ESO Conference on Very Large Telescopes and Their Instrumentation (European Southern Observatory, 1988), 693–703.

1985 (1)

1982 (1)

D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A 72, 52–61 (1982).
[CrossRef]

1975 (2)

R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Applegate, R. A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

Artal, P.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

Ashman, R.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vision Sci. 85, 330–340 (2008).
[CrossRef]

P. A. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[CrossRef] [PubMed]

D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
[CrossRef]

Atchison, D.

G. Smith and D. Atchison, The Eye and Visual Optical Instruments (Cambridge Univ. Press, 1997).
[CrossRef]

Atchison, D. A.

D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
[CrossRef]

G. Smith and D. A. Atchison, “The gradient index and spherical aberration of the lens of the human eye,” Appl. Opt. 21, 317–326 (2001).

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Beckers, J. M.

J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of ESO Conference on Very Large Telescopes and Their Instrumentation (European Southern Observatory, 1988), 693–703.

Bedggood, P.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vision Sci. 85, 330–340 (2008).
[CrossRef]

P. Bedggood, “Adaptive optics methods to increase the isoplanatic patch size for human retinal imaging,” Ph.D. dissertation (University of Melbourne, 2008).

Bedggood, P. A.

P. A. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[CrossRef] [PubMed]

Belyakov, A.

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE 6138, 260–266 (2006).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE 5894, 88–94 (2005).

Berrio, E.

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Bescós, J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).

Bradley, A.

Brennan, N. A.

Burns, S. A.

Campbell, M.

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Cheng, X.

Cherezova, T.

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE 6138, 260–266 (2006).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE 5894, 88–94 (2005).

Cox, I. G.

Daaboul, M.

P. A. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vision Sci. 85, 330–340 (2008).
[CrossRef]

Dainty, C.

Dainty, J. C.

Dicke, R. H.

R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
[CrossRef]

Donnelly Iii, W.

Dubinin, A.

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE 6138, 260–266 (2006).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE 5894, 88–94 (2005).

Dubra, A.

Ellerbroek, B. L.

Elsner, A. E.

Escudero-Sanz, I.

Esposito, S.

Ferguson, D.

Foy, R.

M. Tallon and R. Foy, “Adaptive telescope with laser probe: isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).

Fried, D. L.

D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A 72, 52–61 (1982).
[CrossRef]

Gómez-Vieyra, A.

Goncharov, A. V.

Guirao, A.

Hammer, D. X.

Hebert, T.

Hong, X.

Huynh, M. A.

D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
[CrossRef]

Johnston, D. C.

Kasthurirangan, S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Knutsson, P.

Kudryashov, A.

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE 6138, 260–266 (2006).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE 5894, 88–94 (2005).

Liang, J.

Liou, H.-L.

Lucas, S. D.

D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
[CrossRef]

Maida, E. M.

E. M. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” (http://wwwcfao.ucolick.org/EO//internshipsnew/mainland/posters/erika.pdf, 2004).

Malacara-Hernández, D.

Marsack, J.

E. M. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” (http://wwwcfao.ucolick.org/EO//internshipsnew/mainland/posters/erika.pdf, 2004).

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Metha, A.

P. A. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vision Sci. 85, 330–340 (2008).
[CrossRef]

Metha, A. B.

Miller, D. T.

Navarro, R.

Ngo, P. Q.

D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
[CrossRef]

Owner-Petersen, M.

Popovic, Z.

Porter, J.

Puglisi, A.

Queener, H.

Romero-Borja, F.

Roorda, A.

J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” (http://vision.berkeley.edu/wildsoet/Arvo2006/Isoplanatic%20Patch_Janice_Austin.pdf, 2006).

E. M. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” (http://wwwcfao.ucolick.org/EO//internshipsnew/mainland/posters/erika.pdf, 2004).

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[PubMed]

Santamaría, J.

Schilt, D. W.

D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
[CrossRef]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

Smith, G.

P. A. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vision Sci. 85, 330–340 (2008).
[CrossRef]

P. A. Bedggood, R. Ashman, G. Smith, and A. B. Metha, “Multiconjugate adaptive optics applied to an anatomically accurate human eye model,” Opt. Express 14, 8019–8030 (2006).
[CrossRef] [PubMed]

G. Smith and D. A. Atchison, “The gradient index and spherical aberration of the lens of the human eye,” Appl. Opt. 21, 317–326 (2001).

G. Smith and D. Atchison, The Eye and Visual Optical Instruments (Cambridge Univ. Press, 1997).
[CrossRef]

Tallon, M.

M. Tallon and R. Foy, “Adaptive telescope with laser probe: isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).

Tarrant, J.

J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” (http://vision.berkeley.edu/wildsoet/Arvo2006/Isoplanatic%20Patch_Janice_Austin.pdf, 2006).

Thaung, J.

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Tokovinin, A.

A. Tokovinin, “Seeing improvement with ground-layer adaptive optics,” Publ. Astron. Soc. Pac. 116, 941–951 (2004).
[CrossRef]

Tumbar, R.

Venkateswaran, K.

E. M. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” (http://wwwcfao.ucolick.org/EO//internshipsnew/mainland/posters/erika.pdf, 2004).

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

Welsh, B. M.

Williams, D. R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).

Appl. Opt. (1)

Astron. Astrophys. (1)

M. Tallon and R. Foy, “Adaptive telescope with laser probe: isoplanatism and cone effect,” Astron. Astrophys. 235, 549–557 (1990).

Astrophys. J. (1)

R. H. Dicke, “Phase-contrast detection of telescope seeing errors and their correction,” Astrophys. J. 198, 605–615 (1975).
[CrossRef]

J. Biomed. Opt. (1)

P. A. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt. 13, 024008 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (11)

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A 72, 52–61 (1982).
[CrossRef]

D. C. Johnston and B. M. Welsh, “Analysis of multiconjugate adaptive optics,” J. Opt. Soc. Am. A 11, 394–408 (1994).
[CrossRef]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[CrossRef] [PubMed]

H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modelling,” J. Opt. Soc. Am. A 14, 1684–1694 (1997).
[CrossRef]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157–2174 (2007).
[CrossRef]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[CrossRef]

B. L. Ellerbroek, “Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques,” J. Opt. Soc. Am. A 19, 1803–1816 (2002).
[CrossRef]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24, 1313–1326 (2007).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

J. Refract. Surg. (1)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refract. Surg. 18, S652–S660 (2002).
[PubMed]

J. Vision (2)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vision 4, 272–280 (2004).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Optom. Vision Sci. (2)

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vision Sci. 85, 330–340 (2008).
[CrossRef]

D. A. Atchison, S. D. Lucas, R. Ashman, M. A. Huynh, D. W. Schilt, and P. Q. Ngo, “Refraction and aberration across the horizontal central 10 degrees of the visual field,” Optom. Vision Sci. 83, 213–221 (2006).
[CrossRef]

Proc. SPIE (2)

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE 5894, 88–94 (2005).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE 6138, 260–266 (2006).

Publ. Astron. Soc. Pac. (2)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

A. Tokovinin, “Seeing improvement with ground-layer adaptive optics,” Publ. Astron. Soc. Pac. 116, 941–951 (2004).
[CrossRef]

Other (6)

J. M. Beckers, “Increasing the size of the isoplanatic patch with multiconjugate adaptive optics,” in Proceedings of ESO Conference on Very Large Telescopes and Their Instrumentation (European Southern Observatory, 1988), 693–703.

E. M. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” (http://wwwcfao.ucolick.org/EO//internshipsnew/mainland/posters/erika.pdf, 2004).

J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” (http://vision.berkeley.edu/wildsoet/Arvo2006/Isoplanatic%20Patch_Janice_Austin.pdf, 2006).

P. Bedggood, “Adaptive optics methods to increase the isoplanatic patch size for human retinal imaging,” Ph.D. dissertation (University of Melbourne, 2008).

G. Smith and D. Atchison, The Eye and Visual Optical Instruments (Cambridge Univ. Press, 1997).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the system modeled to explore alternative AO modalities. Exit pupil diameter of the eye is 7.5 mm , which corresponds, respectively, to 30 mm and 15 mm for the first and second deformable mirrors.

Fig. 2
Fig. 2

Comparison of patch size obtained with different AO modalities on three isolated model eyes. The eyes featuring GRIN lenses (Goncharov and Dainty, and Liou and Brennan) achieve a large conventional patch size, leaving less room to improve upon conventional AO. Conversely the Navarro eye, without a GRIN lens, shows far more potential for improvement.

Fig. 3
Fig. 3

Patch size resulting from each AO correction modality employed on the Liou and Brennan eye, incorporating the effects of a realistic optical system. Compared with the isolated-eye case, simply altering corrector position had little effect, and multiple beacons offered a moderate improvement. MCAO did not offer much benefit over the multiple-beacon method.

Fig. 4
Fig. 4

Isoplanatic patch diameter for various isolated single-telescope AO systems as a function of input beam diameter. Legend entries indicate whether the optical pair were spherical achromatic doublets, spherical mirrors, or parabolic mirrors. The associated number indicates the focal length of each component in millimeters. Full angular deviation of the beam for the mirror pairs was 14°. Asymmetry was significant for the parabolic mirrors, as can be seen from the vertical (V) and horizontal (H) patch diameter obtained.

Fig. 5
Fig. 5

Effect of relay optic asphericity for a single telescope composed of 200 mm optics, for a lens-based and mirror-based system. Aspheric telescopes were achieved by modifying the corresponding 200 mm spherical telescope with asphericity on the first surface only. Aspherizing the mirrors produced little effect, but a large improvement was possible for the lenses.

Fig. 6
Fig. 6

Effect of additional relay telescopes on isoplanatic patch diameter. Focal length of each optic considered was 200 mm except for GRIN lenses, which were 65 mm . Aspheric telescopes were implemented by modifying the spherical doublet telescope with an asphericity of 1.25 on the front surface only.

Fig. 7
Fig. 7

Isoplanatic patch diameter for various configurations involving a single relay telescope. Focal length of each optic was 200 mm except for the GRIN lenses that had a focal length of 65 mm . Aspheric telescopes were achieved by modifying the spherical doublet telescope with an asphericity of 1.25 on the front surface only. Patch diameter in the horizontal (H) vs. vertical (V) meridia was highly dependent upon magnitude and sign of spherical aberration for the mirror-based telescope.

Metrics