Abstract

Rigorous calculations are performed to study the effective reduction of the nonlinear excitation volumes when using phase-only masks to condition the pump and Stokes driving fields. Focal volume reduction was achieved using both a multiplicative operation of the excitation fields as well as a subtractive operation. Using a tunable optical bottle beam for the Stokes field, an effective reduction of the width of the excitation volume by a factor of 1.5 can be achieved in the focal plane. Further reduction of the focal volume introduces a rapid growth of sidelobes, which renders such volumes unsuitable for imaging applications. In addition, phase sensitive detection was found to provide information from selective sub-divisions of the engineered coherent anti-Stokes Raman scattering excitation volume. In the case of isolated nanoparticles, an apparent resolution improvement by a factor of 3 is demonstrated, and it is shown that the size of sub-diffraction-limited particles can be accurately determined using phase sensitive detection.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
    [CrossRef] [PubMed]
  2. J. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
    [CrossRef] [PubMed]
  3. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999).
    [CrossRef] [PubMed]
  4. A. Zumbusch, G. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [CrossRef]
  5. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
    [CrossRef]
  6. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
    [CrossRef]
  7. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [CrossRef] [PubMed]
  8. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108, 827–840 (2004).
    [CrossRef]
  9. J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
    [CrossRef]
  10. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
    [CrossRef]
  11. B. J. Davis, W. C. Karl, A. K. Swan, M. S. Unlu, and B. B. Goldberg, “Capabilities and limitations of pupil-plane filters for superresolution and image enhancement,” Opt. Express 12, 4150–4156 (2004).
    [CrossRef] [PubMed]
  12. J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
    [CrossRef]
  13. V. V. Krishnamachari and E. O. Potma, “Focus-engineered coherent anti-Stokes Raman scattering: a numerical investigation,” J. Opt. Soc. Am. A 24, 1138–1147 (2007).
    [CrossRef]
  14. V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with Focus engineered CARS microscopy,” Vib. Spectrosc. 50, 10–14 (2009).
    [CrossRef]
  15. M. R. Beversluis and S. J. Stranick, “Enhanced contrast coherent anti-Stokes Raman scattering microscopy using annular phase masks,” Appl. Phys. Lett. 93, 231115 (2008).
    [CrossRef]
  16. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34, 1240–1242 (2009).
    [CrossRef] [PubMed]
  17. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
    [CrossRef]
  18. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  19. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).
  20. G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).
  21. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [CrossRef]
  22. R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
    [CrossRef]
  23. D. Yelin, B. E. Bouma, and G. J. Tearney, “Generating an adjustable three-dimensional dark focus,” Opt. Lett. 29, 661–663 (2004).
    [CrossRef] [PubMed]
  24. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).
  25. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006).
    [CrossRef] [PubMed]
  26. E. O. Potma and V. V. Krishnamachari, in Imaging with Phase Sensitive Narrowband Nonlinear Microscopy, Biochemical Applications of Nonlinear Optical Spectroscopy, V.Yakovlev, ed. (CRC, 2009).
  27. W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
    [CrossRef]
  28. W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
    [CrossRef]
  29. I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. A 72, 1287–1291 (1982).
    [CrossRef]
  30. T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997).
    [CrossRef]
  31. Z. S. Hegedus and V. Safaris, “Superresolving filters in confocally scanned imaging systems,” J. Opt. Soc. Am. A 3, 1892–1896 (1986).
    [CrossRef]
  32. C. J. R. Sheppard, G. Calvert, and M. Wheatland, “Focal distribution for superresolving toraldo filters,” J. Opt. Soc. Am. A 15, 849–856 (1998).
    [CrossRef]
  33. M. Jurna, J. P. Korteik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
    [CrossRef] [PubMed]
  34. A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
    [CrossRef]
  35. H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
    [CrossRef] [PubMed]
  36. Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging gold nanorods by plasmon-resonance-enhanced four-wave mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
    [CrossRef]

2010

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

2009

E. O. Potma and V. V. Krishnamachari, in Imaging with Phase Sensitive Narrowband Nonlinear Microscopy, Biochemical Applications of Nonlinear Optical Spectroscopy, V.Yakovlev, ed. (CRC, 2009).

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with Focus engineered CARS microscopy,” Vib. Spectrosc. 50, 10–14 (2009).
[CrossRef]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34, 1240–1242 (2009).
[CrossRef] [PubMed]

M. Jurna, J. P. Korteik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging gold nanorods by plasmon-resonance-enhanced four-wave mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
[CrossRef]

2008

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

M. R. Beversluis and S. J. Stranick, “Enhanced contrast coherent anti-Stokes Raman scattering microscopy using annular phase masks,” Appl. Phys. Lett. 93, 231115 (2008).
[CrossRef]

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).

2007

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

V. V. Krishnamachari and E. O. Potma, “Focus-engineered coherent anti-Stokes Raman scattering: a numerical investigation,” J. Opt. Soc. Am. A 24, 1138–1147 (2007).
[CrossRef]

2006

2004

2003

R. W. Boyd, Nonlinear Optics (Academic, 2003).

2002

2000

1999

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5, 169–175 (1999).
[CrossRef] [PubMed]

A. Zumbusch, G. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

1998

1997

1986

1982

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. A 72, 1287–1291 (1982).
[CrossRef]

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

1952

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).

Arlt, J.

Bartels, R. A.

Beeker, W. P.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis and S. J. Stranick, “Enhanced contrast coherent anti-Stokes Raman scattering microscopy using annular phase masks,” Appl. Phys. Lett. 93, 231115 (2008).
[CrossRef]

Boller, K. -J.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

Bouma, B. E.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Brakenhoff, G. J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

J. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

Calvert, G.

Chen, H.

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging gold nanorods by plasmon-resonance-enhanced four-wave mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
[CrossRef]

Cheng, J. X.

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging gold nanorods by plasmon-resonance-enhanced four-wave mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
[CrossRef]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

Cheng, J. -X.

Cleff, C.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

Cox, I. J.

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. A 72, 1287–1291 (1982).
[CrossRef]

Davidson, N.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Davis, B. J.

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006).
[CrossRef] [PubMed]

Fallnich, C.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Goldberg, B. B.

Groß, P.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).

Hegedus, Z. S.

Herek, J. L.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

M. Jurna, J. P. Korteik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

Holtom, G.

A. Zumbusch, G. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Huang, Z.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Jung, Y.

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging gold nanorods by plasmon-resonance-enhanced four-wave mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
[CrossRef]

Jurna, M.

M. Jurna, J. P. Korteik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Karl, W. C.

Khaykovich, L.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Kim, H.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Korteik, J. P.

M. Jurna, J. P. Korteik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

Krishnamachari, V. V.

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

E. O. Potma and V. V. Krishnamachari, in Imaging with Phase Sensitive Narrowband Nonlinear Microscopy, Biochemical Applications of Nonlinear Optical Spectroscopy, V.Yakovlev, ed. (CRC, 2009).

V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with Focus engineered CARS microscopy,” Vib. Spectrosc. 50, 10–14 (2009).
[CrossRef]

V. V. Krishnamachari and E. O. Potma, “Focus-engineered coherent anti-Stokes Raman scattering: a numerical investigation,” J. Opt. Soc. Am. A 24, 1138–1147 (2007).
[CrossRef]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Lee, C. J.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

Lin, J.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Lu, F.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Masihzadeh, O.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Morris, G. M.

Müller, M.

J. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

Nikolaenko, A.

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).

Offerhaus, H. L.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

W. P. Beeker, P. Groβ, C. J. Lee, C. Cleff, H. L. Offerhaus, C. Fallnich, J. L. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[CrossRef]

M. Jurna, J. P. Korteik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

Otto, C.

M. Jurna, J. P. Korteik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

Ozeri, R.

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Padgett, M. J.

Penner, R. M.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Potma, E. O.

V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with Focus engineered CARS microscopy,” Vib. Spectrosc. 50, 10–14 (2009).
[CrossRef]

E. O. Potma and V. V. Krishnamachari, in Imaging with Phase Sensitive Narrowband Nonlinear Microscopy, Biochemical Applications of Nonlinear Optical Spectroscopy, V.Yakovlev, ed. (CRC, 2009).

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

V. V. Krishnamachari and E. O. Potma, “Focus-engineered coherent anti-Stokes Raman scattering: a numerical investigation,” J. Opt. Soc. Am. A 24, 1138–1147 (2007).
[CrossRef]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006).
[CrossRef] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Safaris, V.

Sales, T. R. M.

Schlup, P.

Sheppard, C. J. R.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

C. J. R. Sheppard, G. Calvert, and M. Wheatland, “Focal distribution for superresolving toraldo filters,” J. Opt. Soc. Am. A 15, 849–856 (1998).
[CrossRef]

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. A 72, 1287–1291 (1982).
[CrossRef]

Silberberg, Y.

Squier, J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

J. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

Stranick, S. J.

M. R. Beversluis and S. J. Stranick, “Enhanced contrast coherent anti-Stokes Raman scattering microscopy using annular phase masks,” Appl. Phys. Lett. 93, 231115 (2008).
[CrossRef]

Swan, A. K.

Taggart, D. K.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Tearney, G. J.

Tong, L.

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging gold nanorods by plasmon-resonance-enhanced four-wave mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
[CrossRef]

Toraldo di Francia, G.

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Unlu, M. S.

Volkmer, A.

Wang, H.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).

Wheatland, M.

Wilson, K. R.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

J. Squier, M. Müller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998).
[CrossRef] [PubMed]

Wilson, T.

I. J. Cox, C. J. R. Sheppard, and T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. A 72, 1287–1291 (1982).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).

Xiang, C.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002).
[CrossRef]

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
[CrossRef]

A. Zumbusch, G. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Yelin, D.

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).

Zheng, W.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

Annu. Rev. Anal. Chem.

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1, 883–909 (2008).
[CrossRef]

Appl. Phys. B

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87, 389–393 (2007).
[CrossRef]

Appl. Phys. Lett.

M. R. Beversluis and S. J. Stranick, “Enhanced contrast coherent anti-Stokes Raman scattering microscopy using annular phase masks,” Appl. Phys. Lett. 93, 231115 (2008).
[CrossRef]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009).
[CrossRef]

Atti Fond. Giorgio Ronchi

G. Toraldo di Francia, “Nuovo pupille superrisolvente,” Atti Fond. Giorgio Ronchi 7, 366–372 (1952).

Front. Neu. Circuits

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photosimulation with spatial light modulators,” Front. Neu. Circuits 2, 1–14 (2008).

J. Microsc.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. B

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory and applications,” J. Phys. Chem. B 108, 827–840 (2004).
[CrossRef]

J. Phys. Chem. C

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “Imaging gold nanorods by plasmon-resonance-enhanced four-wave mixing,” J. Phys. Chem. C 113, 2657–2663 (2009).
[CrossRef]

Nano Lett.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-Stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8, 2373–2377 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groβ, C. Cleff, C. Fallnich, H. L. Offerhaus, and J. L. Herek, “Spatially dependent Rabi oscillations: An approach to sub-diffraction-limited coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[CrossRef]

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

R. Ozeri, L. Khaykovich, and N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Phys. Rev. Lett.

A. Zumbusch, G. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[CrossRef]

M. Jurna, J. P. Korteik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. A

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II: Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Science

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[CrossRef] [PubMed]

Vib. Spectrosc.

V. V. Krishnamachari and E. O. Potma, “Multi-dimensional differential imaging with Focus engineered CARS microscopy,” Vib. Spectrosc. 50, 10–14 (2009).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, 2003).

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).

E. O. Potma and V. V. Krishnamachari, in Imaging with Phase Sensitive Narrowband Nonlinear Microscopy, Biochemical Applications of Nonlinear Optical Spectroscopy, V.Yakovlev, ed. (CRC, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the CARS excitation scheme for multiplicative focal volume shaping. The Stokes beam is reflected off the SLM and combined with the pump beam on a dichroic mirror. A typical phase mask pattern to generate an OBB at focus is also shown.

Fig. 2
Fig. 2

Focal field profiles in the focal plane for (a), (b) pump; (c), (d) Stokes; and (e), (f) CARS excitation. (a), (c), (e) are the amplitude profiles, and (b), (d), (f) are the phase profiles. Input beam profiles of pump and Stokes are assumed to be uniform and OBB with ρ = 0.62 , respectively.

Fig. 3
Fig. 3

Lateral cross-sections of the CARS excitation profiles along (a) x and (b) y directions in the focal plane for different phase partition radii ρ. Blue squares: ρ = 0.60 and red circles: ρ = 0.62 . Also shown in black triangles is the uniform input excitation profile for comparison. Solid curves are a guide to the eye.

Fig. 4
Fig. 4

(a) Variation of central-lobe FWHM as a function of phase partition radius ρ of the OBB. (b) Variation of the sidelobe to center lobe intensity ratio as a function of ρ. Blue diamond: along x direction; red circles: along y direction. FWHM with Gaussian input along x and y directions is shown in blue dashed and red dotted lines, respectively, in (a). Solid curves are a guide to the eye.

Fig. 5
Fig. 5

Schematic of the CARS excitation scheme for subtractive focal volume shaping. The pump beam is split in two on a 50:50 beam splitter. E p 1 propagates unaltered, whereas E p 2 is modulated with a SLM and is phase delayed by π / 2 . The modified pump beams and Stokes beam are combined on a dichroic combiner and sent to the microscope. A typical phase mask pattern to generate HG10 mode is also shown.

Fig. 6
Fig. 6

CARS excitation profiles at the focal plane for (a),(b) E p 1 2 E S ; (c), (d) E p 2 2 E S ; (e), (f) ( E p 1 2 E p 2 2 ) E S ; and (g), (h) 2 E p 1 E p 2 E S terms. (a), (c), (e), (g) are the amplitude profiles, and (b), (d), (f), (h) are the phase profiles. Input beam profiles of pump 1 and Stokes are assumed to be uniform, while pump 2 is HG10 mode.

Fig. 7
Fig. 7

Lateral cross-sections of the CARS excitation profiles along x direction for subtractive focal volume shaping for various pump intensity ratios, | E p 2 / E p 1 | 2 . Blue squares: | E p 2 / E p 1 | 2 = 1 and red circles: | E p 2 / E p 1 | 2 = 2 . Also shown in black triangles is uniform input excitation profile for comparison. Solid curves are a guide to the eye.

Fig. 8
Fig. 8

Comparison of x direction profiles of CARS excitation at the focal plane for OBB with ρ = 0.60 (blue circles) and four-zone Toraldo-style phase mask with 0 - π phase jumps at ρ = 0.2 , 0.4, and 0.735 (red squares). Slight reduction in sidelobe intensity is achieved for identical FWHM of center lobe. Solid curves are a guide to the eye.

Fig. 9
Fig. 9

Interferometric detection of focal volume compartments of CARS excitation profile with 200 nm diameter of center lobe. (a) and (b) show the amplitude and phase profiles of CARS excitation at the focal plane. (c) Simulated lock-in signal (normalized to LO signal) detected in far-field with a 50 nm object is scanned laterally through focus along x direction.

Fig. 10
Fig. 10

Interferometric detection of focal volume compartments of CARS excitation profile with 100 nm diameter of center lobe. (a) and (b) show the amplitude and phase profiles of CARS excitation at the focal plane. (c) Simulated lock-in signal (normalized to LO signal) detected in far-field with a 50 nm object is scanned laterally through focus along x direction.

Fig. 11
Fig. 11

Lock-in signal (normalized to LO signal) obtained from particles of varying sizes. Two different CARS excitation profiles are considered. Red circles: 100 nm diameter of center lobe; blue squares: 150 nm diameter of center lobe. Solid lines are a guide to the eye. The inset shows the relation between the zero crossing width and the size of the particle.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z ) = i f λ e i k f 0 θ max d θ 0 2 π d ϕ ( n 1 n 2 ) 1 / 2 sin   θ cos   θ e i k ( x   sin   θ   cos   ϕ + y   sin   θ   sin   ϕ + z   cos   θ ) R ϕ 1 R θ 1 R ϕ E i n c .
R ϕ = ( cos   ϕ sin   ϕ 0 sin   ϕ cos   ϕ 0 0 0 1 ) ,
R θ = ( cos   θ 0 sin   θ 0 1 0 sin   θ 0 cos   θ ) .
P ( 3 ) ( ω a s , r ) = ϵ 0 χ ( 3 ) ( ω a s ; ω p , ω p , ω S ) E p 2 ( ω p , r ) E S ( ω S , r ) ,
E ( ω a s , R ) = V e i k | R r | 4 π | R r | 3 ( R r ) × [ ( R r ) × P ( ω a s , r ) ] d 3 r ,
I far = 0 2 π d ϕ 0 θ det d θ R 2   sin   θ | E ( R , θ , ϕ ) | 2 .
P ( 3 ) χ ( 3 ) ( E p 1 2 E S + E p 2 2 E S e i π + 2 E p 1 E p 2 E S e i π / 2 ) .
I total | E e x + E l o | 2 = | E a s | 2 + | E l o | 2 + 2 | E a s | | E l o | cos   Θ ,

Metrics