Abstract

A surface plasmon resonance (SPR) imaging biosensor based on silver substrates was investigated to demonstrate that silver could be used as a substrate material for sensitive detection of biomolecular interactions, despite its poor chemical stability. The calculation results showed that oxidation of silver film may lead to a decrease in the sensitivity due to a variation in SPR characteristics such as a broader curve width and shallower minimum reflectance at resonance. The effect of a change in the refractive index of target analytes on the sensitivity was also explored. In particular, it is noteworthy that Ag/Au bimetallic substrates with a thin gold protection layer to prevent oxidation of a silver film can provide a significant amplification of SPR imaging signals in comparison with conventional gold substrates.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
    [CrossRef]
  2. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  3. K. L. Prime and G. M. Whitesides, “Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces,” Science 252, 1164–1167 (1991).
    [CrossRef] [PubMed]
  4. P. Mitchell, “A perspective on protein microarrays,” Nat. Biotechnol. 20, 225–229 (2002).
    [CrossRef] [PubMed]
  5. C. L. Wong, H. P. Ho, T. T. Yu, Y. K. Suen, W. W. Y. Chow, S. Y. Wu, W. C. Law, W. Yuan, W. J. Li, S. K. Kong, and C. Lin, “Two-dimensional biosensor arrays based on surface plasmon resonance phase imaging,” Appl. Opt. 46, 2325–2332 (2007).
    [CrossRef] [PubMed]
  6. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
    [CrossRef] [PubMed]
  7. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
    [CrossRef] [PubMed]
  8. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).
    [CrossRef]
  9. X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106–112 (2002).
    [CrossRef]
  10. M. F. Al-Kuhaili, “Characterization of thin films produced by the thermal evaporation of silver oxide,” J. Phys. D: Appl. Phys. 40, 2847–2853 (2007).
    [CrossRef]
  11. H. Sahm, C. Charton, and R. Thielsch, “Oxidation behavior of thin silver films deposited on plastic web characterized by spectroscopic ellipsometry (SE),” Thin Solid Films 455–456, 819–823 (2004).
    [CrossRef]
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  13. H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films 333, 82–87 (1998).
    [CrossRef]
  14. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
    [CrossRef] [PubMed]
  15. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).
  16. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159, 24–32 (2010).
    [CrossRef]
  17. H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  18. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
    [CrossRef] [PubMed]
  19. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
    [CrossRef]
  20. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725–735 (2008).
    [CrossRef]
  21. A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48, 745–748 (2003).
    [CrossRef]
  22. D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13, 2833–2842 (1997).
    [CrossRef]
  23. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
    [CrossRef]

2010 (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159, 24–32 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (2)

2004 (3)

H. Sahm, C. Charton, and R. Thielsch, “Oxidation behavior of thin silver films deposited on plastic web characterized by spectroscopic ellipsometry (SE),” Thin Solid Films 455–456, 819–823 (2004).
[CrossRef]

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

2003 (3)

S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
[CrossRef] [PubMed]

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48, 745–748 (2003).
[CrossRef]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef] [PubMed]

2002 (2)

P. Mitchell, “A perspective on protein microarrays,” Nat. Biotechnol. 20, 225–229 (2002).
[CrossRef] [PubMed]

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106–112 (2002).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1998 (1)

H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films 333, 82–87 (1998).
[CrossRef]

1997 (1)

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13, 2833–2842 (1997).
[CrossRef]

1991 (1)

K. L. Prime and G. M. Whitesides, “Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces,” Science 252, 1164–1167 (1991).
[CrossRef] [PubMed]

1988 (2)

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

1985 (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

1984 (1)

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159, 24–32 (2010).
[CrossRef]

Al-Kuhaili, M. F.

M. F. Al-Kuhaili, “Characterization of thin films produced by the thermal evaporation of silver oxide,” J. Phys. D: Appl. Phys. 40, 2847–2853 (2007).
[CrossRef]

Ao, P.

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106–112 (2002).
[CrossRef]

Byun, K. M.

Case-Green, S. C.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13, 2833–2842 (1997).
[CrossRef]

Chang, G. L.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Charton, C.

H. Sahm, C. Charton, and R. Thielsch, “Oxidation behavior of thin silver films deposited on plastic web characterized by spectroscopic ellipsometry (SE),” Thin Solid Films 455–456, 819–823 (2004).
[CrossRef]

Chen, S. -J.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Chen, W. Y.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Chow, W. W. Y.

Dobson, P. J.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13, 2833–2842 (1997).
[CrossRef]

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Fell, T. S.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13, 2833–2842 (1997).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Gray, D. E.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13, 2833–2842 (1997).
[CrossRef]

Grieneisen, H. P.

H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films 333, 82–87 (1998).
[CrossRef]

Ho, H. P.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[CrossRef] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Hsu, J. H.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Hu, W. P.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Huang, K. -T.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Kalinnikov, S. V.

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48, 745–748 (2003).
[CrossRef]

Kim, D.

Kim, P. S.

Kim, S. J.

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Kong, S. K.

Lai, K. -A.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

Law, W. C.

Lee, G.

Li, W. J.

Libardi, H.

H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films 333, 82–87 (1998).
[CrossRef]

Lin, C.

Lin, P. -H.

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106–112 (2002).
[CrossRef]

Mitchell, P.

P. Mitchell, “A perspective on protein microarrays,” Nat. Biotechnol. 20, 225–229 (2002).
[CrossRef] [PubMed]

Novitskii, N. N.

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48, 745–748 (2003).
[CrossRef]

Oh, C. H.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, S.

Piliarik, M.

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Prime, K. L.

K. L. Prime and G. M. Whitesides, “Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces,” Science 252, 1164–1167 (1991).
[CrossRef] [PubMed]

Raether, H.

H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Sahm, H.

H. Sahm, C. Charton, and R. Thielsch, “Oxidation behavior of thin silver films deposited on plastic web characterized by spectroscopic ellipsometry (SE),” Thin Solid Films 455–456, 819–823 (2004).
[CrossRef]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159, 24–32 (2010).
[CrossRef]

Shuler, M. L.

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Song, S. H.

Sorensen, L. B.

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106–112 (2002).
[CrossRef]

Southern, E. M.

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13, 2833–2842 (1997).
[CrossRef]

Stognij, A. I.

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48, 745–748 (2003).
[CrossRef]

Suen, Y. K.

Thielsch, R.

H. Sahm, C. Charton, and R. Thielsch, “Oxidation behavior of thin silver films deposited on plastic web characterized by spectroscopic ellipsometry (SE),” Thin Solid Films 455–456, 819–823 (2004).
[CrossRef]

Tushina, S. D.

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48, 745–748 (2003).
[CrossRef]

Whitesides, G. M.

K. L. Prime and G. M. Whitesides, “Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces,” Science 252, 1164–1167 (1991).
[CrossRef] [PubMed]

Wong, C. L.

Wu, S. Y.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

Yoon, S. J.

Yu, T. T.

Yuan, W.

Zhu, X. -M.

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106–112 (2002).
[CrossRef]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377, 528–539 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

M. F. Al-Kuhaili, “Characterization of thin films produced by the thermal evaporation of silver oxide,” J. Phys. D: Appl. Phys. 40, 2847–2853 (2007).
[CrossRef]

Langmuir (2)

D. E. Gray, S. C. Case-Green, T. S. Fell, P. J. Dobson, and E. M. Southern, “Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array,” Langmuir 13, 2833–2842 (1997).
[CrossRef]

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Nat. Biotechnol. (1)

P. Mitchell, “A perspective on protein microarrays,” Nat. Biotechnol. 20, 225–229 (2002).
[CrossRef] [PubMed]

Nature (1)

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332, 615–617 (1988).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Science (1)

K. L. Prime and G. M. Whitesides, “Self-assembled organic monolayers: Model systems for studying adsorption of proteins at surfaces,” Science 252, 1164–1167 (1991).
[CrossRef] [PubMed]

Sens. Actuators B (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

X.-M. Zhu, P.-H. Lin, P. Ao, and L. B. Sorensen, “Surface treatments for surface plasmon resonance biosensors,” Sens. Actuators B 84, 106–112 (2002).
[CrossRef]

Sens. Actuators, A (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators, A 159, 24–32 (2010).
[CrossRef]

Surf. Sci. (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Tech. Phys. (1)

A. I. Stognij, N. N. Novitskii, S. D. Tushina, and S. V. Kalinnikov, “Preparation of ultrathin gold films by oxygen-ion sputtering and their optical properties,” Tech. Phys. 48, 745–748 (2003).
[CrossRef]

Thin Solid Films (2)

H. Sahm, C. Charton, and R. Thielsch, “Oxidation behavior of thin silver films deposited on plastic web characterized by spectroscopic ellipsometry (SE),” Thin Solid Films 455–456, 819–823 (2004).
[CrossRef]

H. Libardi and H. P. Grieneisen, “Guided-mode resonance absorption in partly oxidized thin silver films,” Thin Solid Films 333, 82–87 (1998).
[CrossRef]

Other (3)

A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, 1984).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of a thin-film-based SPR configuration with a silver oxide coating. TM-polarized light with λ = 633   nm propagating into a SF10 prism substrate is incident on an adhesion layer of chromium ( d 1 = 2   nm ) , a thin silver film ( d 2 ) , and a silver oxide film ( d 3 ) with an incidence angle of θ. Binding analytes are modeled as 1 nm thick SAM in water solution.

Fig. 2
Fig. 2

(a) SPR reflectance R and (b) its sensitivity d R / d n 4 as functions of incidence angle when the growth of silver oxide layer occurs at the expense of the underlying silver film. The initial thickness of silver film is d 2 = 40   nm and n 4 = 1.50 .

Fig. 3
Fig. 3

Peak sensitivity of SPR imaging when the thickness of the Ag 2 O layer increases. The silver thickness varies from 0 to 90 nm and n 4 = 1.33 . The white arrow indicates the oxidation progress of the silver film with an initial thickness of 40 nm.

Fig. 4
Fig. 4

(a) SPR reflectance and (b) its sensitivity when the thickness of Ag 2 O layer increases. The initial thickness of a silver film is 60 nm and n 4 = 1.33 .

Fig. 5
Fig. 5

Peak sensitivity of SPR imaging when the thickness of Ag 2 O layer increases. The silver thickness varies from 0 to 90 nm and n 4 = 1.50 .

Fig. 6
Fig. 6

(a) SPR reflectance and (b) its sensitivity for d 2 = 60   nm and d 3 = 0   nm , when n 4 is changed from 1.33 to 1.70.

Fig. 7
Fig. 7

Peak sensitivity of SPR imaging when the thickness of gold layer increases up to 20 nm. Silver film thickness varies from 10 to 90 nm and n 4 = 1.33 .

Fig. 8
Fig. 8

(a) SPR reflectance and (b) its sensitivity for d 2 = 60   nm and n 4 = 1.33 , when the thickness of gold layer increases with a step of 4 nm.

Fig. 9
Fig. 9

Peak sensitivity of SPR imaging when n 4 is (a) 1.40, (b) 1.50, (c) 1.60, and (d) 1.70. The scale of color bar is the same as that in Fig. 7.

Fig. 10
Fig. 10

Linear regression analyses between reflectance and refractive index n 4 for SPR imaging configurations with gold (square) and bimetallic (triangle) substrates. As the refractive index of the dielectric medium surrounding the sensor surface increases from 1.462 to 1.480 in steps of 0.03, the reflectance amplitude increases linearly, and the slope, which implies the sensor sensitivity, of a bimetallic substrate shows about three times better performance than for a gold substrate. The solid lines denote the linear fit of our theoretical results.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R = | M 12 M 22 | 2 ,
M = [ M 11 M 12 M 21 M 22 ] = I 01 L 1 I 12 L 2 I 23 L 3 I 34 L 4 I 45 ,
I j k = [ 1 r j k r j k 1 ] ,     L j = [ e i k z j d j 0 0 e i k z j d j ] .
r j k = ( k z j ε j k z k ε k ) ( k z j ε j + k z k ε k ) ,
k z j = ε j ( ω c ) 2 k x 2 ,     with   k x = ε 0 ω c sin   θ ,
r j k = ( k z j ε j ε k k z k ε j ε k ) ( k z j ε j ε k + k z k ε j ε k ) .
S = d R d n 4 .
S = d R d n 4 = d d n 4 | M 12 M 22 | 2 = ( ( d d n 4 | M 12 | ) | M 22 | | M 12 | ( d d n 4 | M 22 | ) | M 22 | 2 ) 2 | M 12 M 22 | .
d d n 4 M = [ d d n 4 M 11 d d n 4 M 12 d d n 4 M 21 d d n 4 M 22 ] = d d n 4 ( [ 1 r 01 r 01 1 ] [ e i k z 1 d 1 0 0 e i k z 1 d 1 ] [ 1 r 12 r 12 1 ] [ e i k z 2 d 2 0 0 e i k z 2 d 2 ] [ 1 r 23 r 23 1 ] [ e i k z 3 d 3 0 0 e i k z 3 d 3 ] [ 1 r 34 r 34 1 ] [ e i k z 4 d 4 0 0 e i k z 4 d 4 ] [ 1 r 45 r 45 1 ] ) = [ 1 r 01 r 01 1 ] [ e i k z 1 d 1 0 0 e i k z 1 d 1 ] [ 1 r 12 r 12 1 ] [ e i k z 2 d 2 0 0 e i k z 2 d 2 ] [ 1 r 23 r 23 1 ] [ e i k z 3 d 3 0 0 e i k z 3 d 3 ] d d n 4 ( [ 1 r 34 r 34 1 ] ) [ e i k z 4 d 4 0 0 e i k z 4 d 4 ] [ 1 r 45 r 45 1 ] + [ 1 r 01 r 01 1 ] [ e i k z 1 d 1 0 0 e i k z 1 d 1 ] [ 1 r 12 r 12 1 ] [ e i k z 2 d 2 0 0 e i k z 2 d 2 ] [ 1 r 23 r 23 1 ] [ e i k z 3 d 3 0 0 e i k z 3 d 3 ] [ 1 r 34 r 34 1 ] d d n 4 ( [ e i k z 4 d 4 0 0 e i k z 4 d 4 ] ) [ 1 r 45 r 45 1 ] + [ 1 r 01 r 01 1 ] [ e i k z 1 d 1 0 0 e i k z 1 d 1 ] [ 1 r 12 r 12 1 ] [ e i k z 2 d 2 0 0 e i k z 2 d 2 ] [ 1 r 23 r 23 1 ] [ e i k z 3 d 3 0 0 e i k z 3 d 3 ] [ 1 r 34 r 34 1 ] [ e i k z 4 d 4 0 0 e i k z 4 d 4 ] d d n 4 ( [ 1 r 45 r 45 1 ] ) .
d d n j ( r j k ) = d d n k ( r j k ) = d d n j ( k z j n j 2 k z k ε k k z j n j 2 + k z k ε k ) = ( k z j n j 2 k z k ε k ) ( 2 k z j n j 3 w 2 c 2 n j k z j ) ( k z j n j 2 + k z k ε k ) 2 ( 2 k z j n j 3 w 2 c 2 n j k z j ) ( k z j n j 2 + k z k ε k ) .
d d n j ( e i k z j d j ) = d d n j ( e i d j n j 2 ( ω / c ) 2 k x 2 ) = i d j w 2 e i 2 k z j d j c 2 k z j .

Metrics