Abstract

In vivo tissue imaging using near-infrared light suffers from low spatial resolution and poor contrast recovery because of highly scattered photon transport. For diffuse optical tomography (DOT) and fluorescence molecular tomography (FMT), the resolution is limited to about 5–10% of the diameter of the tissue being imaged, which puts it in the range of performance seen in nuclear medicine. This paper introduces the mathematical formalism explaining why the resolution of FMT can be significantly improved when using instruments acquiring fast time-domain optical signals. This is achieved through singular-value analysis of the time-gated inverse problem based on weakly diffused photons. Simulations relevant to mouse imaging are presented showing that, in stark contrast to steady-state imaging, early time-gated intensities (within 200ps or 400ps) can in principle be used to resolve small fluorescent targets (radii from 1.5to2.5mm) separated by less than 1.5mm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, S323-S325 (2002).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).
    [PubMed]
  4. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123-128 (2003).
    [CrossRef] [PubMed]
  5. Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28, 2070-2072 (2003).
    [CrossRef] [PubMed]
  6. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef] [PubMed]
  7. E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Molec. Med. 4, 419-430 (2004).
    [CrossRef]
  8. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
    [CrossRef] [PubMed]
  9. J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
    [CrossRef] [PubMed]
  10. X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65, 6330-6336 (2005).
    [CrossRef] [PubMed]
  11. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
    [CrossRef] [PubMed]
  12. D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
    [CrossRef] [PubMed]
  13. A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
    [PubMed]
  14. A. C. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007).
    [CrossRef] [PubMed]
  15. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45-47 (2008).
    [CrossRef]
  16. A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
    [CrossRef] [PubMed]
  17. M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426-428 (1995).
    [CrossRef] [PubMed]
  18. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
    [CrossRef] [PubMed]
  19. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709-1729 (1995).
    [CrossRef] [PubMed]
  20. B. W. Pogue, T. McBride, U. Osterberg, and K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270-286 (1999).
    [CrossRef] [PubMed]
  21. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26, 701-703 (2001).
    [CrossRef]
  22. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231-241 (2004).
    [CrossRef]
  23. T. Lasser and V. Ntziachristos, “Optimization of360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389-399 (2007).
    [CrossRef] [PubMed]
  24. H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
    [CrossRef] [PubMed]
  25. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882-884 (1998).
    [CrossRef]
  26. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
    [CrossRef] [PubMed]
  27. B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of rat cranium using a priori MRI structural information,” Opt. Lett. 23, 1716-1718 (1998).
    [CrossRef]
  28. B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003).
    [CrossRef]
  29. X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155-N163 (2004).
    [CrossRef] [PubMed]
  30. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043-8058 (2007).
    [CrossRef] [PubMed]
  31. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
    [CrossRef] [PubMed]
  32. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering NIR tomography improves quantification and robustness of reconstruction,” Appl. Opt. 44, 1858-1869 (2004).
    [CrossRef]
  33. M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
    [CrossRef] [PubMed]
  34. J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E 56, 1135-1141 (1997).
    [CrossRef]
  35. M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
    [CrossRef]
  36. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411 (2005).
    [CrossRef] [PubMed]
  37. G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405-1411 (2007).
    [CrossRef] [PubMed]
  38. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
    [CrossRef] [PubMed]
  39. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
    [CrossRef]
  40. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
    [CrossRef] [PubMed]
  41. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
    [CrossRef]
  42. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
    [CrossRef] [PubMed]
  43. F. Leblond, N. Mincu, N. Robitaille, S. Fortier, M. Khayat, and B. W. Pogue, “Why acquiring excitation data improves the quality of reconstructed fluorescence images for highly heterogeneous diffusive media,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBTuF9.
  44. F. Leblond, S. Fortier, and M. P. Friedlander, “Diffuse optical fluorescence tomography using data acquired in transmission,” Proc. SPIE 6431, 643106 (2007).
    [CrossRef]
  45. V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193-201 (1999).
    [CrossRef]
  46. V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115-1124 (2001).
    [CrossRef] [PubMed]
  47. M. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).
    [CrossRef]
  48. S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263-2275 (2005).
    [CrossRef] [PubMed]
  49. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255-12270 (2006).
    [CrossRef] [PubMed]
  50. A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152-1163 (2008).
    [CrossRef] [PubMed]
  51. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384-7391 (2007).
    [CrossRef] [PubMed]
  52. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117-3128 (2003).
    [CrossRef] [PubMed]
  53. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713-2727 (2003).
    [CrossRef] [PubMed]
  54. E. M. Sevick-Muraca and C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928-1930 (1994).
    [CrossRef] [PubMed]
  55. J. Riley, M. Hassan, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890-4900 (2007).
    [CrossRef]
  56. M. P. Friedlander and K. Hatz, “Computing nonnegative tensor factorizations,” Optim. Methods Software 23, 631-647 (2008).
    [CrossRef]
  57. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (Society for Industrial and Applied Mathematics, 1998).
    [CrossRef]
  58. H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 135-145 (2003).
    [CrossRef] [PubMed]
  59. M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44, 5468-5474 (2005).
    [CrossRef] [PubMed]

2009

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

2008

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
[CrossRef] [PubMed]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152-1163 (2008).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45-47 (2008).
[CrossRef]

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

M. P. Friedlander and K. Hatz, “Computing nonnegative tensor factorizations,” Optim. Methods Software 23, 631-647 (2008).
[CrossRef]

2007

A. C. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043-8058 (2007).
[CrossRef] [PubMed]

V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt. 46, 7384-7391 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, “Optimization of360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

J. Riley, M. Hassan, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890-4900 (2007).
[CrossRef]

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405-1411 (2007).
[CrossRef] [PubMed]

F. Leblond, S. Fortier, and M. P. Friedlander, “Diffuse optical fluorescence tomography using data acquired in transmission,” Proc. SPIE 6431, 643106 (2007).
[CrossRef]

2006

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
[CrossRef] [PubMed]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255-12270 (2006).
[CrossRef] [PubMed]

M. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

2005

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

S. Lam, F. Lesage, and X. Intes, “Time domain fluorescent diffuse optical tomography: analytical expressions,” Opt. Express 13, 2263-2275 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65, 6330-6336 (2005).
[CrossRef] [PubMed]

2004

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Molec. Med. 4, 419-430 (2004).
[CrossRef]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155-N163 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering NIR tomography improves quantification and robustness of reconstruction,” Appl. Opt. 44, 1858-1869 (2004).
[CrossRef]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

2003

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117-3128 (2003).
[CrossRef] [PubMed]

Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28, 2070-2072 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713-2727 (2003).
[CrossRef] [PubMed]

B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003).
[CrossRef]

H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).
[PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

2002

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, S323-S325 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

2001

2000

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

1999

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

B. W. Pogue, T. McBride, U. Osterberg, and K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270-286 (1999).
[CrossRef] [PubMed]

1998

1997

J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E 56, 1135-1141 (1997).
[CrossRef]

1995

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709-1729 (1995).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426-428 (1995).
[CrossRef] [PubMed]

1994

Achilefu, S.

Aikawa, E.

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
[CrossRef] [PubMed]

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

Alfano, R. R.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Arridge, S. R.

Bacskai, B. J.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152-1163 (2008).
[CrossRef] [PubMed]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255-12270 (2006).
[CrossRef] [PubMed]

Bender Kim, C. F.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Berger, M.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Blessington, D.

Boas, D. A.

Bogdanov, A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Boutet, J.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Boverman, G.

Brambilla, M.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).
[PubMed]

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, S323-S325 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Brooksby, B.

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117-3128 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003).
[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713-2727 (2003).
[CrossRef] [PubMed]

Burch, C. L.

Cai, W.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Carpenter, C. M.

Chance, B.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155-N163 (2004).
[CrossRef] [PubMed]

Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28, 2070-2072 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115-1124 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426-428 (1995).
[CrossRef] [PubMed]

Chen, Y.

Chernomordik, V.

J. Riley, M. Hassan, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890-4900 (2007).
[CrossRef]

Choe, R.

Coll, J.-L.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Corlu, A.

Corlu, A. C.

Cubeddu, R.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Culver, J. P.

Da Silva, A.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

de Kleine, R.

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
[CrossRef] [PubMed]

Dehghani, H.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043-8058 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering NIR tomography improves quantification and robustness of reconstruction,” Appl. Opt. 44, 1858-1869 (2004).
[CrossRef]

B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003).
[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713-2727 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117-3128 (2003).
[CrossRef] [PubMed]

Deliolanis, N.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

Dinten, J.-M.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Dunn, A. K.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152-1163 (2008).
[CrossRef] [PubMed]

Dunn, J. F.

H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Durduran, T.

Economou, N.

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

Elson, D. S.

Fortier, S.

F. Leblond, S. Fortier, and M. P. Friedlander, “Diffuse optical fluorescence tomography using data acquired in transmission,” Proc. SPIE 6431, 643106 (2007).
[CrossRef]

F. Leblond, N. Mincu, N. Robitaille, S. Fortier, M. Khayat, and B. W. Pogue, “Why acquiring excitation data improves the quality of reconstructed fluorescence images for highly heterogeneous diffusive media,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBTuF9.

French, P. M. W.

Friedlander, M. P.

M. P. Friedlander and K. Hatz, “Computing nonnegative tensor factorizations,” Optim. Methods Software 23, 631-647 (2008).
[CrossRef]

F. Leblond, S. Fortier, and M. P. Friedlander, “Diffuse optical fluorescence tomography using data acquired in transmission,” Proc. SPIE 6431, 643106 (2007).
[CrossRef]

Gandjbakhche, A.

J. Riley, M. Hassan, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890-4900 (2007).
[CrossRef]

Gao, M.

Garofalakis, A.

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Graves, E. E.

Grimm, J.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65, 6330-6336 (2005).
[CrossRef] [PubMed]

Gruber, J.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

Guven, M.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155-N163 (2004).
[CrossRef] [PubMed]

Hansen, P. C.

P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (Society for Industrial and Applied Mathematics, 1998).
[CrossRef]

Hassan, M.

J. Riley, M. Hassan, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890-4900 (2007).
[CrossRef]

Hatz, K.

M. P. Friedlander and K. Hatz, “Computing nonnegative tensor factorizations,” Optim. Methods Software 23, 631-647 (2008).
[CrossRef]

Herve, L.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Hillman, E. M. C.

Holboke, M. J.

Hutchins, M.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

Hypnarowski, J.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

Intes, X.

Jacks, T.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Jiang, H.

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709-1729 (1995).
[CrossRef] [PubMed]

Jiang, S.

Josephson, L.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Josserand, V.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Kepshire, D.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

Khayat, M.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

F. Leblond, N. Mincu, N. Robitaille, S. Fortier, M. Khayat, and B. W. Pogue, “Why acquiring excitation data improves the quality of reconstructed fluorescence images for highly heterogeneous diffusive media,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBTuF9.

Kioussis, D.

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

Kirsch, D. G.

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
[CrossRef] [PubMed]

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Koenig, A.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Kumar, A. T. N.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152-1163 (2008).
[CrossRef] [PubMed]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255-12270 (2006).
[CrossRef] [PubMed]

Lam, S.

Lasser, T.

T. Lasser and V. Ntziachristos, “Optimization of360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

Lax, M.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Leblond, F.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

F. Leblond, S. Fortier, and M. P. Friedlander, “Diffuse optical fluorescence tomography using data acquired in transmission,” Proc. SPIE 6431, 643106 (2007).
[CrossRef]

F. Leblond, N. Mincu, N. Robitaille, S. Fortier, M. Khayat, and B. W. Pogue, “Why acquiring excitation data improves the quality of reconstructed fluorescence images for highly heterogeneous diffusive media,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBTuF9.

Lee, K.

Lesage, F.

Lewis, G.

Li, H.

Lionheart, W. R. B.

Liu, Q.

Ma, X.

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

Maloux, C.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155-N163 (2004).
[CrossRef] [PubMed]

Mamalaki, C.

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

McBride, T.

McGinty, J.

Meyer, H.

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

Mincu, N.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

F. Leblond, N. Mincu, N. Robitaille, S. Fortier, M. Khayat, and B. W. Pogue, “Why acquiring excitation data improves the quality of reconstructed fluorescence images for highly heterogeneous diffusive media,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBTuF9.

Montet, X.

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65, 6330-6336 (2005).
[CrossRef] [PubMed]

Nahrendorf, M.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

Neil, M. A. A.

Niedre, M.

M. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

Niedre, M. J.

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
[CrossRef] [PubMed]

Novikov, M.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

Ntziachristos, V.

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45-47 (2008).
[CrossRef]

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405-1411 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, “Optimization of360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

M. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
[CrossRef] [PubMed]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65, 6330-6336 (2005).
[CrossRef] [PubMed]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Molec. Med. 4, 419-430 (2004).
[CrossRef]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).
[PubMed]

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, S323-S325 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26, 701-703 (2001).
[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
[CrossRef]

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115-1124 (2001).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

O'Leary, M. A.

Osterberg, U.

Paasschens, J. C. J.

J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E 56, 1135-1141 (1997).
[CrossRef]

Papamatheakis, J.

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

Patterson, M. S.

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709-1729 (1995).
[CrossRef] [PubMed]

Paulsen, K.

Paulsen, K. D.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043-8058 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering NIR tomography improves quantification and robustness of reconstruction,” Appl. Opt. 44, 1858-1869 (2004).
[CrossRef]

B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003).
[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713-2727 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117-3128 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of rat cranium using a priori MRI structural information,” Opt. Lett. 23, 1716-1718 (1998).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709-1729 (1995).
[CrossRef] [PubMed]

Peltie, P.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Perrimon, N.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45-47 (2008).
[CrossRef]

Pifferi, A.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Pitsouli, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45-47 (2008).
[CrossRef]

Pogue, B. W.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15, 8043-8058 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering NIR tomography improves quantification and robustness of reconstruction,” Appl. Opt. 44, 1858-1869 (2004).
[CrossRef]

B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003).
[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713-2727 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, “Three dimensional optical tomography: resolution in small object imaging,” Appl. Opt. 42, 135-145 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging,” Appl. Opt. 42, 3117-3128 (2003).
[CrossRef] [PubMed]

B. W. Pogue, T. McBride, U. Osterberg, and K. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270-286 (1999).
[CrossRef] [PubMed]

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of rat cranium using a priori MRI structural information,” Opt. Lett. 23, 1716-1718 (1998).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709-1729 (1995).
[CrossRef] [PubMed]

F. Leblond, N. Mincu, N. Robitaille, S. Fortier, M. Khayat, and B. W. Pogue, “Why acquiring excitation data improves the quality of reconstructed fluorescence images for highly heterogeneous diffusive media,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBTuF9.

Raymond, S. B.

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152-1163 (2008).
[CrossRef] [PubMed]

A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255-12270 (2006).
[CrossRef] [PubMed]

Razansky, D.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45-47 (2008).
[CrossRef]

Riley, J.

J. Riley, M. Hassan, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890-4900 (2007).
[CrossRef]

Ripoll, J.

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Rizo, P.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

Robitaille, N.

F. Leblond, N. Mincu, N. Robitaille, S. Fortier, M. Khayat, and B. W. Pogue, “Why acquiring excitation data improves the quality of reconstructed fluorescence images for highly heterogeneous diffusive media,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBTuF9.

Rosen, M. A.

Rosenzweig, A.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

Santiago, P. M.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Schnall, M. D.

Schweiger, M.

Sevick-Muraca, E. M.

Shudong, J.

Soloviev, V. Y.

Sosnovik, D. E.

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

Soubret, A.

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405-1411 (2007).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

M. Gao, G. Lewis, G. M. Turner, A. Soubret, and V. Ntziachristos, “Effects of background fluorescence in fluorescence molecular tomography,” Appl. Opt. 44, 5468-5474 (2005).
[CrossRef] [PubMed]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

Spinelli, L.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Springett, R. F.

H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Srinivasan, S.

Tahir, K. B.

Torricelli, A.

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Tung, C.

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, S323-S325 (2002).
[CrossRef] [PubMed]

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Turner, G. M.

Vinegoni, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45-47 (2008).
[CrossRef]

Vishwanath, K.

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713-2727 (2003).
[CrossRef] [PubMed]

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Weissleder, R.

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
[CrossRef] [PubMed]

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65, 6330-6336 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, “Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography,” J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Molec. Med. 4, 419-430 (2004).
[CrossRef]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).
[PubMed]

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, S323-S325 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Windsor, S. D.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Xu, H.

H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Xu, M.

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Yalavarthy, P. K.

Yazici, T.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155-N163 (2004).
[CrossRef] [PubMed]

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

Yodh, A. G.

A. C. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696-6716 (2007).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26, 701-703 (2001).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426-428 (1995).
[CrossRef] [PubMed]

Zacharakis, G.

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

Zhang, M.

Zhang, Z. H.

Zheng, G.

Zhou, L.

Acad. Radiol.

V. Ntziachristos, C. Bremer, C. Tung, and R. Weissleder, “Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT),” Acad. Radiol. 9, S323-S325 (2002).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng.

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1-33 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Cancer Res.

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65, 6330-6336 (2005).
[CrossRef] [PubMed]

Circulation

D. E. Sosnovik, M. Nahrendorf, N. Deliolanis, M. Novikov, E. Aikawa, L. Josephson, A. Rosenzweig, R. Weissleder, and V. Ntziachristos, “Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo,” Circulation 115, 1384-1391 (2007).
[CrossRef] [PubMed]

Curr. Molec. Med.

E. E. Graves, R. Weissleder, and V. Ntziachristos, “Fluorescence molecular imaging of small animal tumor models,” Curr. Molec. Med. 4, 419-430 (2004).
[CrossRef]

Eur. Radiol.

V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol. 13, 195-208 (2003).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

B. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9, 199-209 (2003).
[CrossRef]

IEEE Trans. Med. Imaging

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: Study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152-1163 (2008).
[CrossRef] [PubMed]

Inverse Probl.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

J. Biomed. Opt.

A. Koenig, L. Herve, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J.-M. Dinten, P. Peltie, J.-L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13, 011008 (2008).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, “Near-infrared imaging in the small animal brain: optimization of fiber positions,” J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

M. Niedre, G. M. Turner, and V. Ntziachristos, “Time-resolved imaging of optical coefficients through murine chest cavities,” J. Biomed. Opt. 11, 064017 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Med. Image Anal.

T. Lasser and V. Ntziachristos, “Optimization of360 degrees projection fluorescence molecular tomography,” Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

Med. Phys.

G. M. Turner, A. Soubret, and V. Ntziachristos, “Inversion with early photons,” Med. Phys. 34, 1405-1411 (2007).
[CrossRef] [PubMed]

J. Riley, M. Hassan, V. Chernomordik, and A. Gandjbakhche, “Choice of data types in time resolved fluorescence enhanced diffuse optical tomography,” Med. Phys. 34, 4890-4900 (2007).
[CrossRef]

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys. 28, 1115-1124 (2001).
[CrossRef] [PubMed]

Mol. Imaging

A. Garofalakis, G. Zacharakis, H. Meyer, N. Economou, C. Mamalaki, J. Papamatheakis, D. Kioussis, V. Ntziachristos, and J. Ripoll, “Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography,” Mol. Imaging 6, 96-107 (2007).
[PubMed]

Nat. Biotechnol.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Nat. Med.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

Nat. Methods

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45-47 (2008).
[CrossRef]

Neoplasia

V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347-354 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28, 2070-2072 (2003).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis,” Opt. Lett. 26, 701-703 (2001).
[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893-895 (2001).
[CrossRef]

E. M. Sevick-Muraca and C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928-1930 (1994).
[CrossRef] [PubMed]

M. A. O'Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426-428 (1995).
[CrossRef] [PubMed]

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882-884 (1998).
[CrossRef]

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of rat cranium using a priori MRI structural information,” Opt. Lett. 23, 1716-1718 (1998).
[CrossRef]

Optim. Methods Software

M. P. Friedlander and K. Hatz, “Computing nonnegative tensor factorizations,” Optim. Methods Software 23, 631-647 (2008).
[CrossRef]

Phys. Med. Biol.

X. Intes, C. Maloux, M. Guven, T. Yazici, and B. Chance, “Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49, N155-N163 (2004).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709-1729 (1995).
[CrossRef] [PubMed]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713-2727 (2003).
[CrossRef] [PubMed]

Phys. Rev. E

J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E 56, 1135-1141 (1997).
[CrossRef]

M. Xu, W. Cai, M. Lax, and R. R. Alfano, “Photon migration in turbid media using a cumulant approximation to radiative transfer,” Phys. Rev. E 65, 066609 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105, 19126-19131 (2008).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294-12299 (2004).
[CrossRef] [PubMed]

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Bender Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, “Use of gene expression profiling to direct in vivo molecular imaging of lung cancer,” Proc. Natl. Acad. Sci. U.S.A. 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Proc. SPIE

F. Leblond, S. Fortier, and M. P. Friedlander, “Diffuse optical fluorescence tomography using data acquired in transmission,” Proc. SPIE 6431, 643106 (2007).
[CrossRef]

Rev. Sci. Instrum.

V. Ntziachristos, X. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum. 70, 193-201 (1999).
[CrossRef]

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microCT guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80, 043701 (2009).
[CrossRef] [PubMed]

M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum. 79, 013103 (2008).
[CrossRef] [PubMed]

Other

F. Leblond, N. Mincu, N. Robitaille, S. Fortier, M. Khayat, and B. W. Pogue, “Why acquiring excitation data improves the quality of reconstructed fluorescence images for highly heterogeneous diffusive media,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDPBTuF9.

P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (Society for Industrial and Applied Mathematics, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of the optical instrument. Shown is a single excitation source position and the five channels. Diffuse light signals at the surface of the specimen are collected using focalized detection. The detected signals are then separated and directed to two sets of PMTs dedicated to fluorescence and excitation signals at each fiber channel. This detection geometry is that used for the simulations presented in this paper. (b) Impulse-response-function (IRF) and sample fluorescence time-resolved signal acquired for one of the channels.

Fig. 2
Fig. 2

Schematic representation of a turbid medium Ω with boundary δ Ω . The spatial distribution of optical properties is represented by μ while a local perturbation over this background is represented by Δ μ . For modeling purposes, an isotropic source term S ( r , t ) is inserted under the tissue surface at the place of entry of a collimated laser beam. The light transport solutions between different space-time locations are labeled Φ.

Fig. 3
Fig. 3

Steady-state photon distribution associated with a diffusive light source inserted one reduced scattering distance under the tissue surface. (b) Steady-sate photon sensitivity distribution associated with a light collection point located on the surface of the mouse head. (c) Photon sensitivity distribution associated with the source and detector location shown in (a) and (b). (d) Segmented CT image (1, brain; 2, skull; 3, rest of tissues) used to project sources and detectors as well as to tag different anatomical regions with different optical properties.

Fig. 4
Fig. 4

Diffusion photon sensitivity distributions for the imaging geometry represented in Fig. 2 for a given source–detector pair. From left to right, sensitivity plots for increasingly large time gates are shown with the last image corresponding to a steady-state signal. The upper row shows distributions computed assuming that the diffusive medium has homogeneous optical properties, while the bottom row of images corresponds to a medium with heterogeneous optical properties.

Fig. 5
Fig. 5

Target images reconstructed with the iterative regularization method BCLS. The first column corresponds to the target images used to generate synthetic data for different time-gates. In the upper images, the fluorescence contrast is infinite, while in the lower ones the contrast is 6 to 1. Reconstructed images shown are for weakly diffused photon time-gates 0 200 ps and 0 400 ps as well as for simulated steady-state signal for comparison purposes. No noise was added in the simulated data for these reconstructions.

Fig. 6
Fig. 6

Decay curve of singular values (log-scale) as a function of their order i for two FMT forward model matrices corresponding to weakly diffused photons ( 0 200 ps time-gate) as well as steady-state signal. The decay rate for the weakly diffuse photons is significantly less favorable to noise propagation in the images. (b) Illustration of some image-singular modes for the same two forward models. At the same order, the spatial frequency of the modes associated with weakly diffused photons is typically smaller than those associated with steady-state signal, again affording more leeway in reconstructing high-spatial-resolution images.

Fig. 7
Fig. 7

Illustration of the FMT forward model matrix condition number as a function of the time-gates that are included in the signal: (a) simulated time-domain signal, (b) graph showing the condition number of the matrix for time-gates from 0 ns to t ns, where t is the x-axis value on the graph.

Fig. 8
Fig. 8

Stochastic noise propagation in time-gated TPSF signals. The lower graph shows two curves (peak count of 500) where noise following a Poisson distribution with mean N (number of counts in individual time bins) was added. Time-gates T 200 ps , T 400 ps , and T CW are highlighted. The upper image shows how noise propagates into the time-gates for different TPSF peak counts. The x-axis for both pictures corresponds to the end-point of the time-gate ( t 2 ) . The initial point of the time-gates was always t 1 = 0 ns .

Fig. 9
Fig. 9

Infinite contrast target image reconstructed with the iterative regularization method BCLS for different levels of noise. The first column corresponds to the target image used to generate synthetic data for different time-gates. Reconstructed images shown are for weakly diffused photon time-gates 0 200 ps and 0 400 ps as well as for simulated steady-state signal for comparison purposes. Three different levels of noise are shown: 1%, 5%, 10%.

Fig. 10
Fig. 10

6 to 1 contrast target image reconstructed with the iterative regularization method BCLS for different levels of noise. The first column corresponds to the target image used to generate synthetic data for different time-gates. Reconstructed images shown are for weakly diffused photon time-gates 0 200 ps and 0 400 ps as well as for simulated steady-state signal for comparison purposes. Three different levels of noise are shown: 1%, 5%, 10%.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

δ S Ω = J = 1 N V A J [ μ J ] δ μ J ,
δ S Ω ( r , t ) = N Ω d 3 r d t Π 1 Φ λ 1 ( r , t ) δ μ ( r , t ) Π 2 Φ λ 2 ( r r ; t t ) ,
δ S Ω ( r , t ) Ω d 3 r d t [ Φ ( r , t ) δ μ a ( r ) G ( r r , t t ) + Φ ( r , t ) δ μ s ( r ) G ( r r , t t ) ] ,
n c Φ x ( r , t ) t D x ( r ) Φ x ( r , t ) + μ a x ( r ) Φ x ( r , t ) = S ( r , t ) ,
n c Φ e ( r , t ) t D e ( r ) Φ e ( r , t ) + μ a e Φ e ( r , t ) = l = 1 N F [ Q F l ϵ F l d t Φ x ( r , t ) C F l ( r ) e ( t t ) τ l ] ,
Φ e ( r , t ) = Q F ϵ F Ω d 3 r d t ( d t Φ x ( r , t ) C F ( r ) e ( t t ) τ ) G e ( r r , t t ) ,
[ Φ 1 e Φ N m e ] = [ A 1 t ( r 1 ) A 1 t ( r N V ) A N m t ( r 1 ) A N m t ( r N V ) ] × [ C F ( r 1 ) C F ( r N V ) ] ,
A k t ( r i ) = Q F ϵ F d t ( d t Φ x ( r i , t ) e ( t t ) τ ) G e ( r i r k , t t ) .
A k t ( r i ) t = t 1 t 2 A k t ( r i ) .
A k t ( r i ) A k t Δ t ( r i ) A k t + Δ t ( r i ) 2 Δ t .
argmin C F s.t. l C F u A C F Φ 2 + γ 2 L C F 2 ,
A = U Σ V T = i = 1 n u i σ i ν i T
C F = i = 1 N SVD f ( σ i ) σ i ( ν i T Φ ) u i ,
Φ T = A T C F ,
SNR = N ,

Metrics