Abstract

Time-gated (TG) Fourier-domain optical coherence tomography (FDOCT) exploits interferometric imaging with incoherent gating to filter out unwanted backreflections and improve contrast. The system uses sum-frequency generation with a variable length optical pulse as a “time gate” to restrict the depth field of view of backscattered light to 84176μm (−20 dB points). The imaging bandwidth is upconverted from the IR (1280 nm) to visible (504 nm), which allows the use of sensitive silicon-based detection technology, prior to standard FDOCT processing. The TG system achieves a maximum sensitivity of 88 dB, and a contrast enhancement of 29 dB is shown over a standard IR FDOCT system. Imaging of a highly scattering medium (onion skin) is also demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription