Abstract

Time-gated (TG) Fourier-domain optical coherence tomography (FDOCT) exploits interferometric imaging with incoherent gating to filter out unwanted backreflections and improve contrast. The system uses sum-frequency generation with a variable length optical pulse as a “time gate” to restrict the depth field of view of backscattered light to 84176μm (−20 dB points). The imaging bandwidth is upconverted from the IR (1280 nm) to visible (504 nm), which allows the use of sensitive silicon-based detection technology, prior to standard FDOCT processing. The TG system achieves a maximum sensitivity of 88 dB, and a contrast enhancement of 29 dB is shown over a standard IR FDOCT system. Imaging of a highly scattering medium (onion skin) is also demonstrated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745-1747 (2003).
    [CrossRef] [PubMed]
  2. H. Lim, M. Mujat, C. Kerbage, E. C. W. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Express 14, 12902-12908 (2006).
    [CrossRef] [PubMed]
  3. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  4. M. S. Muller, P. J. L. Webster, and J. M. Fraser, “Time-gated Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3336-3338 (2007).
    [CrossRef] [PubMed]
  5. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726-735 (2006).
    [CrossRef] [PubMed]
  6. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
    [CrossRef]
  7. X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, “The measurement of ultrashort light pulses-simple devices, complex pulses,” Opt. Rev. 11, 141-152 (2004).
    [CrossRef]
  8. R. Trebino, “FROG,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 101-115.
  9. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207-R227 (2003).
    [CrossRef]
  10. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, and A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150-152 (1986).
    [CrossRef] [PubMed]
  11. C. Doulé, T. Lépine, P. Georges, and A. Brun, “Video rate depth-resolved 2D imaging through turbid media by femtosecond parametric amplification,” Opt. Lett. 25, 353-355 (2000).
    [CrossRef]
  12. M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868-1870 (1991).
    [CrossRef] [PubMed]
  13. T. Yasui, K. Minoshima, E. Abraham, and H. Matsumoto, “Microscopic time-resolved 2D imaging with a femtosecond amplifying optical Kerr gate,” Appl. Opt. 41, 5191-5194 (2002).
    [CrossRef] [PubMed]
  14. E. Baigar, C. Hauger, and W. Zinth, “Imaging within highly scattering media using time-resolved backscattering of femtosecond pulses,” Appl. Phys. B 67, 257-261 (1998).
    [CrossRef]
  15. R. Trebino and J. Buck, “Nonlinear optics,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 37-60.
    [CrossRef]
  16. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583-594 (2005).
    [CrossRef] [PubMed]
  17. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  18. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,”Opt. Express 11, 3598-3604 (2003).
    [CrossRef] [PubMed]
  19. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

2005 (2)

2004 (2)

2003 (4)

2002 (1)

2000 (1)

1998 (1)

E. Baigar, C. Hauger, and W. Zinth, “Imaging within highly scattering media using time-resolved backscattering of femtosecond pulses,” Appl. Phys. B 67, 257-261 (1998).
[CrossRef]

1991 (1)

1986 (1)

Abraham, E.

Adler, D. C.

Akturk, S.

X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, “The measurement of ultrashort light pulses-simple devices, complex pulses,” Opt. Rev. 11, 141-152 (2004).
[CrossRef]

Baigar, E.

E. Baigar, C. Hauger, and W. Zinth, “Imaging within highly scattering media using time-resolved backscattering of femtosecond pulses,” Appl. Phys. B 67, 257-261 (1998).
[CrossRef]

Bajraszewski, T.

Bouma, B. E.

Brun, A.

Buck, J.

R. Trebino and J. Buck, “Nonlinear optics,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 37-60.
[CrossRef]

Cao, Q.

X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, “The measurement of ultrashort light pulses-simple devices, complex pulses,” Opt. Rev. 11, 141-152 (2004).
[CrossRef]

Chen, T. C.

Chen, Y.

de Boer, J. F.

De Silvestri, S.

Doulé, C.

Duker, J. S.

Duncan, M. D.

Dunsby, C.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207-R227 (2003).
[CrossRef]

Fercher, A. F.

Fraser, J. M.

French, P. M. W.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207-R227 (2003).
[CrossRef]

Fujimoto, J. G.

Georges, P.

Götzinger, E.

Gu, X.

X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, “The measurement of ultrashort light pulses-simple devices, complex pulses,” Opt. Rev. 11, 141-152 (2004).
[CrossRef]

Hauger, C.

E. Baigar, C. Hauger, and W. Zinth, “Imaging within highly scattering media using time-resolved backscattering of femtosecond pulses,” Appl. Phys. B 67, 257-261 (1998).
[CrossRef]

Hitzenberger, C. K.

Huber, R.

Iftimia, N.

Ippen, E. P.

Kerbage, C.

Ko, T. H.

Kowalczyk, A.

Lee, E. C. W.

Leitgeb, R.

Leitgeb, R. A.

Lépine, T.

Lim, H.

Mahon, R.

Margolis, R.

Matsumoto, H.

Minoshima, K.

Mujat, M.

Muller, M. S.

Oh, W. Y.

Oseroff, A.

Park, B. H.

Pircher, M.

Puliafito, C. A.

Reintjes, J.

Shreenath, A.

X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, “The measurement of ultrashort light pulses-simple devices, complex pulses,” Opt. Rev. 11, 141-152 (2004).
[CrossRef]

Srinivasan, V. J.

Tankersley, L. L.

Targowski, P.

Tearney, G. J.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Trebino, R.

X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, “The measurement of ultrashort light pulses-simple devices, complex pulses,” Opt. Rev. 11, 141-152 (2004).
[CrossRef]

R. Trebino, “FROG,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 101-115.

R. Trebino and J. Buck, “Nonlinear optics,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 37-60.
[CrossRef]

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

Webster, P. J. L.

Wojtkowski, M.

Yasui, T.

Yelin, R.

Yun, S. H.

Zinth, W.

E. Baigar, C. Hauger, and W. Zinth, “Imaging within highly scattering media using time-resolved backscattering of femtosecond pulses,” Appl. Phys. B 67, 257-261 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

E. Baigar, C. Hauger, and W. Zinth, “Imaging within highly scattering media using time-resolved backscattering of femtosecond pulses,” Appl. Phys. B 67, 257-261 (1998).
[CrossRef]

J. Phys. D (2)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005).
[CrossRef]

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207-R227 (2003).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Opt. Rev. (1)

X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, “The measurement of ultrashort light pulses-simple devices, complex pulses,” Opt. Rev. 11, 141-152 (2004).
[CrossRef]

Other (2)

R. Trebino, “FROG,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 101-115.

R. Trebino and J. Buck, “Nonlinear optics,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 37-60.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Overall schematic of time gating applied to FDOCT. Top: light backscattered from different layers of the sample, with different temporal delays, are shown with different shades for clarity. Bottom: selection of a specific imaging depth of field using the nonlinear process of sum-frequency mixing.

Fig. 2
Fig. 2

Experimental set-up: OPO—optical parametric oscillator; BBO (β-barium borate)—nonlinear crystal for sum-frequency generation; HWP—half-wave plate; ND—variable neutral density filter.

Fig. 3
Fig. 3

Infrared point-spread function on a linear and a logarithmic scale.

Fig. 4
Fig. 4

Time-gated point-spread function on a linear and a logarithmic scale.

Fig. 5
Fig. 5

Axial resolution (points) measured across the time-gate attenuation profile (solid line), gate centered on reference arm reflection.

Fig. 6
Fig. 6

Contrast enhancement using TG FDOCT. Left-hand schematic: sensitivity limited performance. Right-hand schematic: dynamic range limited performance.

Fig. 7
Fig. 7

Multiple reflections between a slide and mirror imaged using standard IR FDOCT and TG FDOCT. Time-gating around the second reflection (red curve) shows 29 dB contrast improvement over standard IR FDOCT. Time-gating also images the third reflection (green curve) that is below the noise floor in the standard IR FDOCT image.

Fig. 8
Fig. 8

Two-dimensional standard and TG FDOCT scans of onion skin.

Fig. 9
Fig. 9

Rescaled and zoomed 2D standard and TG FDOCT scans of onion skin. Highlighted: TG cells visible at 250 μ m beneath the surface.

Tables (1)

Tables Icon

Table 1 TG and Standard OCT System Specification Summary

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ref + E sam = A ref   exp [ i ( ω OCT t β ( ω OCT ) z ref ) ] + A sam   exp [ i ( ω OCT t β ( ω OCT ) z sam ) ] .
E SFG ( t ) A gate   exp [ i ( ω gate t β ( ω gate ) z gate ) ] × { A ref   exp [ i ( ω OCT t β ( ω OCT ) z ref ) ] + A sam   exp [ i ( ω OCT t β ( ω OCT ) z sam ) ] } ,
I SFG 1 T t t + T | E SFG ( t ) | 2 d t = ( A gate A ref ) 2 + ( A gate A sam ) 2 + 2 ( A gate ) 2 A ref A sam   cos [ β ( ω OCT ) ( z ref z sam ) ] .

Metrics