Abstract

Key noise parameters in optical coherence tomography (OCT) systems employing splitters with a nonflat spectral response are evaluated using a supercontinuum fiber laser source with a spectrum of 450nm1700nm and a time domain OCT architecture based on 1300nm fiber splitters. The spectral behavior of the splitter leading to balanced detection is measured over a range of 300nm. Because of spectrally different signals at the balanced detector input a residual excess photon noise term results. A rigorous treatment of this noise term [Appl. Opt. 43, 4802 (2004) ] introduced two new quantities that take into account the spectral properties of the coupler. In this report, we have evaluated these two noise bandwidth quantities and comparatively assessed the noise behavior predicted by the classical theory with the theory based on the two new noise bandwidths. We show that under certain operating parameters, the additional excess photon noise is twice that predicted for a coupler with a flat spectral response.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Liang, M. Gomez Cid, R. G. Cucu, G. M. Dobre, A. Gh. Podoleanu, J. Pedro, and D. Saunders, “En-face optical coherence tomography--a novel application of non-invasive imaging to art conservation,” Opt. Express 13, 6133-6144 (2005).
    [CrossRef] [PubMed]
  2. A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
    [CrossRef] [PubMed]
  3. Fianium: http://www.fianium.com.
  4. Koheras: http://www.koheras.com.
  5. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098-1108 (1998).
    [CrossRef]
  6. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, highspeed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  7. K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797-8804 (2007).
    [CrossRef] [PubMed]
  8. A. Gh. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173-182 (2000).
    [CrossRef]
  9. C. C. Rosa and A. Gh. Podoleanu, “Limitation of the achievable signal-to-noise ratio in optical coherence tomography due to mismatch of the balanced receiver,” Appl. Opt. 43, 4802-4815 (2004).
    [CrossRef] [PubMed]
  10. P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96-98 (1990).
    [CrossRef]
  11. K. Takada, A. Himeno, and K. Yukimatsu, “Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483-2485 (1991).
    [CrossRef]

2007

2005

2004

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

C. C. Rosa and A. Gh. Podoleanu, “Limitation of the achievable signal-to-noise ratio in optical coherence tomography due to mismatch of the balanced receiver,” Appl. Opt. 43, 4802-4815 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, highspeed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

2000

1998

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098-1108 (1998).
[CrossRef]

1991

K. Takada, A. Himeno, and K. Yukimatsu, “Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483-2485 (1991).
[CrossRef]

1990

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96-98 (1990).
[CrossRef]

Ahnelt, P. K.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Bizheva, K.

K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. W. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797-8804 (2007).
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Budka, H.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Cid, M. Gomez

Cowey, A.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Cucu, R. G.

Dobre, G. M.

Drexler, W.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Duker, J.

Fujimoto, J.

Hermann, B.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Himeno, A.

K. Takada, A. Himeno, and K. Yukimatsu, “Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483-2485 (1991).
[CrossRef]

Ko, T.

Kowalczyk, A.

Laming, R. I.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96-98 (1990).
[CrossRef]

Le, T.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Liang, H.

Lundeen, J. S.

Menzel, R.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Mitchell, M. W.

Morgan, J. E.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Morkel, P. R.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96-98 (1990).
[CrossRef]

Payne, D. N.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96-98 (1990).
[CrossRef]

Pedro, J.

Podoleanu, A. Gh.

Povazay, B.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Preusser, M.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Puvanathasan, P.

Reitsamer, H.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Resch, K. J.

Rosa, C. C.

Sattmann, H.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Saunders, D.

Schubert, Ch.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Seefeld, M.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Srinivasan, V.

Stingl, A.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Takada, K.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098-1108 (1998).
[CrossRef]

K. Takada, A. Himeno, and K. Yukimatsu, “Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483-2485 (1991).
[CrossRef]

Unterhuber, A.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Wojtkowski, M.

Yukimatsu, K.

K. Takada, A. Himeno, and K. Yukimatsu, “Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483-2485 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Takada, A. Himeno, and K. Yukimatsu, “Phase-noise and shot-noise limited operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483-2485 (1991).
[CrossRef]

Electron. Lett.

P. R. Morkel, R. I. Laming, and D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96-98 (1990).
[CrossRef]

IEEE J. Quantum Electron.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098-1108 (1998).
[CrossRef]

Opt. Express

Phys. Med. Biol.

A. Unterhuber, B. Povazay, K. Bizheva, B. Hermann, H. Sattmann, A. Stingl, T. Le, M. Seefeld, R. Menzel, M. Preusser, H. Budka, Ch. Schubert, H. Reitsamer, P. K. Ahnelt, J. E. Morgan, A. Cowey, and W. Drexler, “Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography,” Phys. Med. Biol. 49, 1235-1246 (2004).
[CrossRef] [PubMed]

Other

Fianium: http://www.fianium.com.

Koheras: http://www.koheras.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the TD-OCT setup with a two-coupler architecture. An optical filter unit is used to separate two spectral windows out of the broadband spectrum of the SCFL. The single-mode fiber output carries light in the 1200 1500 nm spectral window to the TD-OCT system, where object and reference beams are separated by the first fiber coupler (DC1), while the second fiber coupler (DC2) allows differential detection. DBS = dichroic beam splitter.

Fig. 2
Fig. 2

Representation of directional coupler DC2, which has a cross-coupling coefficient γ ( λ ) dependent on the wavelength λ.

Fig. 3
Fig. 3

(a) Normalized SCFL spectrum input to the DC1 coupler, (b) P [ Obj , PD 1 ] and P [ Obj , PD 2 ] : normalized spectra of light from the object arm measured at each of the two outputs of DC2, (c) P [ Ref , PD 1 ] and P [ Ref , PD 2 ] : normalized spectra of light from the reference arm measured at each of the two outputs of DC2.

Fig. 4
Fig. 4

Comparison of the cross-coupling efficiency γ ( λ ) for object and reference arms calculated for one output of DC2 for the SCFL and the SLD.

Fig. 5
Fig. 5

Relative error in evaluating the EPN between the rigorous and simplified models against (a) σ, the fraction of reference power coupled into the input arm of DC2, and (b) fiber-end reflectivity R.

Fig. 6
Fig. 6

Excess photon noise (EPN) versus input power P SCFL for different values of R and σ = 1 .

Fig. 7
Fig. 7

Parametric representation of the noise-bandwidth-dependent part of EPN against σ. Δ ν 0 1 and Δ ν 1 1 are the effective noise bandwidths of the source.

Fig. 8
Fig. 8

SN and EPN calculated using Eq. (13) versus optical power from the source for different values of R and assuming no attenuation in the reference arm ( σ = 1 ) .

Fig. 9
Fig. 9

SNR curves for different values of R and σ.

Fig. 10
Fig. 10

SNR versus the reference arm attenuation factor σ for different values of the fiber-end reflection coefficient R.

Fig. 11
Fig. 11

Experimentally determined SNR values using two optical sources of different FWHM spectral width (SLD 55 nm ; SCFL 268 nm ) against input power (a) and against reference power (b).

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

P [ Ref , PD 1 ] = G R ( λ ) [ 1 γ ( λ ) ] , P [ Obj , PD 1 ] = G O ( λ ) γ ( λ ) ,
P [ Ref , PD 2 ] = G R ( λ ) γ ( λ ) , P [ Obj , PD 2 ] = G O ( λ ) [ 1 γ ( λ ) ] .
P [ Obj , PD 2 ] P [ Obj , PD 1 ] = 1 γ ( λ ) γ ( λ ) ,
P [ Ref , PD 1 ] P [ Ref , PD 2 ] = 1 γ ( λ ) γ ( λ ) ,
Δ i EPN 2 = 2 α 2 B { P 1 P 2 Δ ν 0 + P 1 2 + P 2 2 Δ ν 1 } ,
Δ ν 0 1 = 8 0 γ ( ν ) [ 1 γ ( ν ) ] G 2 ( ν ) d ν [ 0 G ( ν ) d ν ] 2 ,
Δ ν 1 1 = 0 [ 1 2 γ ( ν ) ] 2 G 2 ( ν ) d ν [ 0 G ( ν ) d ν ] 2 .
Δ ν 1 = 2 0 G 2 ( ν ) d ν [ 0 G ( ν ) d ν ] 2 .
Δ i EPN 2 = 2 α 2 B { P 1 P 2 Δ ν } .
B O S N = 8 ( α γ 1 ) 2 × 0.245 × P SCFL 2 4 k B T R L 1 σ ( 1 γ 1 ) + 2 ( α γ 1 ) 2 { R Δ ν 0 + [ σ ( 1 γ 1 ) + R 2 σ ( 1 γ 1 ) ] 1 Δ ν 1 } P SCFL 2 + 2 e α γ 1 1 ( 1 γ 1 ) P SCFL ,
Δ ν 0 1 = 3.5378 × 10 14 Hz 1 ,
Δ ν 1 1 = 0.0466 × 10 14 Hz 1 .
P 1 = γ 1 σ P SCFL ,
P 2 = γ 1 ( 1 γ 1 ) R P SCFL .
Δ i EPN 2 = 2 ( α γ 1 ) 2 σ ( 1 γ 1 ) B × P SCFL 2 { 3.5378 × 10 14 × R + 0.0466 × 10 14 [ σ ( 1 γ 1 ) + R 2 σ ( 1 γ 1 ) ] } .
Δ i EPN 2 = 2 ( α γ 1 ) 2 B × P SCFL 2 × σ ( 1 γ 1 ) × 3.6311 × 10 14 × R .
ϵ = Δ i EPN 2 rigorous Δ i EPN 2 simplified Δ i EPN 2 rigorous .
B O S N = 1.59 × γ 1 2 P SCFL 2 1.6568 × 10 20 R L 1 σ ( 1 γ 1 ) + 1.62 γ 1 2 { R × 3.5378 × 10 14 + [ σ ( 1 γ 1 ) + R 2 σ ( 1 γ 1 ) ] 0.0466 × 10 14 } P SCFL 2 + 2.884 × 10 19 1 ( 1 γ 1 ) γ 1 P SCFL .
Δ i SCSL 2 Δ i SLD 2 Δ i EPN 2 rigorous Δ i EPN 2 simplified = 0.97 + 0.025 σ R + 0.0064 R σ
( S SCFL S SLD ) 2 × Δ i EPN 2 SCFL Δ i EPN 2 SLD = 0.8 2 × ( 0.97 + 0.025 σ R ) ,

Metrics