Abstract

A localized surface plasmon resonance (LSPR) biosensor using surface relief nanostructures was investigated to evaluate the importance of target localization on the sensitivity enhancement. The LSPR device was modeled as periodic metallic nanowires with a square profile on a gold film and the target as a self-assembled monolayer in buffer solution. The numerical results using rigorous coupled-wave analysis and the finite-difference time domain method demonstrated localized plasmonic fields induced by the surface nanostructure from which the effect of target localization on the sensitivity was quantitatively analyzed. Interestingly, it was found that target localization on nanowire sidewalls improves sensitivity significantly because of strong overlap with localized plasmonic fields. An LSPR structure optimized for a localized target on sidewalls provides sensitivity enhancement per unit target volume by more than 20 times in water ambience.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), chap. 2.
  2. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76, 2210-2219 (2004).
    [CrossRef] [PubMed]
  3. L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103, 5826-5831 (1999).
    [CrossRef]
  4. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
    [CrossRef]
  5. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
    [CrossRef] [PubMed]
  6. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135-2136 (1968).
  7. S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096-1099 (2006).
    [CrossRef]
  8. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737-3742 (2005).
    [CrossRef] [PubMed]
  9. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007).
    [CrossRef] [PubMed]
  10. K. M. Byun, S. J. Kim, and D. Kim, “Profile effect on the feasibility of extinction based localized surface plasmon resonance biosensors using metallic nanowires,” Appl. Opt. 45, 3382-3389 (2006).
    [CrossRef] [PubMed]
  11. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006).
    [CrossRef]
  12. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419-12431 (2006).
    [CrossRef] [PubMed]
  13. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094 (2007).
    [CrossRef] [PubMed]
  14. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725-735 (2008).
    [CrossRef]
  15. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
    [CrossRef] [PubMed]
  16. P. N. Prasad, Nanophotonics (Wiley-Interscience, 2004), Chap. 5.
    [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [CrossRef]
  18. P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681-13690 (1995).
    [CrossRef]
  19. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (N.Y.) 78, 142-143 (2001).
  20. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticles grating and a metallic surface,” Opt. Lett. 30, 3404-3406 (2005).
    [CrossRef]
  21. E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
    [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
    [CrossRef]
  24. L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
    [CrossRef] [PubMed]
  25. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004).
    [CrossRef] [PubMed]
  26. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307-2314 (2007).
    [CrossRef]
  27. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472-1478 (2008).
    [CrossRef]
  28. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096-1098 (2001).
    [CrossRef]
  29. E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
    [CrossRef]
  30. R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
    [CrossRef]
  31. J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Mater. Today 8, 50-56 (2005).
    [CrossRef]

2008 (2)

2007 (4)

2006 (5)

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096-1099 (2006).
[CrossRef]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
[CrossRef] [PubMed]

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419-12431 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, “Profile effect on the feasibility of extinction based localized surface plasmon resonance biosensors using metallic nanowires,” Appl. Opt. 45, 3382-3389 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004).
[CrossRef] [PubMed]

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

2003 (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef] [PubMed]

2001 (4)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (N.Y.) 78, 142-143 (2001).

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096-1098 (2001).
[CrossRef]

2000 (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

1999 (1)

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

1997 (1)

R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
[CrossRef]

1995 (1)

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681-13690 (1995).
[CrossRef]

1986 (1)

1973 (1)

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135-2136 (1968).

Arakawa, E. T.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Atkinson, A.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
[CrossRef] [PubMed]

Badenes, G.

Benkovic, S. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Berggren, K. K.

R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
[CrossRef]

Byun, K. M.

Cesario, J.

Cha, S.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Cui, B.

Ekgasit, S.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Enoch, S.

Fendler, J. H.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Gaylord, T. K.

González, F.

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681-13690 (1995).
[CrossRef]

Hamm, R. N.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (N.Y.) 78, 142-143 (2001).

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004).
[CrossRef] [PubMed]

He, L.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Hong, S.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096-1099 (2006).
[CrossRef]

Hutter, E.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Johnson, K. S.

R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
[CrossRef]

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (N.Y.) 78, 142-143 (2001).

Kang, T.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096-1099 (2006).
[CrossRef]

Keating, C. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Kim, D.

S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725-735 (2008).
[CrossRef]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472-1478 (2008).
[CrossRef]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902-1904 (2007).
[CrossRef] [PubMed]

D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307-2314 (2007).
[CrossRef]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419-12431 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, “Profile effect on the feasibility of extinction based localized surface plasmon resonance biosensors using metallic nanowires,” Appl. Opt. 45, 3382-3389 (2006).
[CrossRef] [PubMed]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737-3742 (2005).
[CrossRef] [PubMed]

Kim, K.

Kim, S. J.

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Knoll, W.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Kottmann, J. P.

J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096-1098 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135-2136 (1968).

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Liu, J.-F.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Lyon, L. A.

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Malic, L.

Martin, O. J. F.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096-1098 (2001).
[CrossRef]

Mirkin, C. A.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
[CrossRef] [PubMed]

Moharam, M. G.

Moon, J.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096-1099 (2006).
[CrossRef]

Moreno, F.

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681-13690 (1995).
[CrossRef]

Musick, M. D.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Natan, M. J.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Nicewarner, S. R.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Nuzzo, R. G.

J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Mater. Today 8, 50-56 (2005).
[CrossRef]

Oh, S.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096-1099 (2006).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, J.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Pena, D. J.

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Prasad, P. N.

P. N. Prasad, Nanophotonics (Wiley-Interscience, 2004), Chap. 5.
[CrossRef]

Prentiss, M.

R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
[CrossRef]

Qin, L.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
[CrossRef] [PubMed]

Quidant, R.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135-2136 (1968).

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), chap. 2.

Ralph, D. C.

R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
[CrossRef]

Ritchie, R. H.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Rogers, J. A.

J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Mater. Today 8, 50-56 (2005).
[CrossRef]

Roy, D.

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Sai, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (N.Y.) 78, 142-143 (2001).

Saiz, J. M.

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681-13690 (1995).
[CrossRef]

Salinas, F. G.

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

Schatz, G. C.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004).
[CrossRef] [PubMed]

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Shuler, M. L.

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Tabrizian, M.

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092-3094 (2007).
[CrossRef] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

Thammacharoen, C.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Valle, P. J.

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681-13690 (1995).
[CrossRef]

Veres, T.

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Whitesides, G. M.

R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
[CrossRef]

Williams, M. W.

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Xue, C.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
[CrossRef] [PubMed]

Yi, J.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096-1099 (2006).
[CrossRef]

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

Yoon, S. J.

Younkin, R.

R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
[CrossRef]

Yu, F.

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (N.Y.) 78, 142-143 (2001).

Zou, S.

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies,” Anal. Chem. 76, 2210-2219 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. (N.Y.) (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (N.Y.) 78, 142-143 (2001).

Appl. Phys. Lett. (1)

R. Younkin, K. K. Berggren, K. S. Johnson, M. Prentiss, D. C. Ralph, and G. M. Whitesides, “Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer,” Appl. Phys. Lett. 71, 1261-1263 (1997).
[CrossRef]

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151-160 (2007).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071-9077 (2000).
[CrossRef]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357-366 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (3)

J. Phys. Chem. B (2)

E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105, 8-12 (2001).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103, 5826-5831 (1999).
[CrossRef]

Mater. Today (1)

J. A. Rogers and R. G. Nuzzo, “Recent progress in soft lithography,” Mater. Today 8, 50-56 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (2)

P. J. Valle, F. Moreno, J. M. Saiz, and F. González, “Near-field scattering from subwavelength metallic protuberances on conducting flat substrates,” Phys. Rev. B 51, 13681-13690 (1995).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

E. T. Arakawa, M. W. Williams, R. N. Hamm, and R. H. Ritchie, “Effect of damping on surface plasmon dispersion,” Phys. Rev. Lett. 31, 1127-1129 (1973).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, and C. A. Mirkin, “Designing, fabricating, and imaging Raman hot spots,” Proc. Natl. Acad. Sci. U.S.A. 103, 13300-13303 (2006).
[CrossRef] [PubMed]

Science (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003).
[CrossRef] [PubMed]

Sens. Actuators B (2)

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance (SPR) signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096-1099 (2006).
[CrossRef]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401-407 (2006).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135-2136 (1968).

Other (3)

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), chap. 2.

P. N. Prasad, Nanophotonics (Wiley-Interscience, 2004), Chap. 5.
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Three-dimensional (3D) schematic of a nanowire-mediated substrate. (b) 2D cross section of the LSPR substrate. TM-polarized light with λ = 633 nm propagating into an SF10 glass is incident on an attachment layer of chromium ( 2 nm ) , a thin gold film ( 40 nm ) , 1D gold nanowires, and a 1 nm thick SAM layer covering the whole substrate surface. Gold nanowires of a rectangular profile, assumed to be infinite in length, have a width w NW , a thickness d NW , and a period Λ. A dielectric SAM on top of the nanowire, sidewalls of the nanowire, and on a gold film is denoted by SAM T , SAM S , and SAM B .

Fig. 2
Fig. 2

SPR reflectance curves of a conventional and nanowire-mediated substrate. Nanowires have a period of Λ = 50 nm and VF = 0.5 . The solid and dashed curves represent without and with a target, respectively.

Fig. 3
Fig. 3

(a) Vertical and (b) horizontal field intensity distribution of E Z around the sensor surface for nanowires with Λ = 50 nm , VF = 0.5 , and d NW = 5 nm . The insets are 2D images obtained from FDTD calculations normalized by the field intensity of 20.

Fig. 4
Fig. 4

Characteristics of (a) SEF and (b) SEF UTV with respect to target localization when a nanowire thickness varies at Λ = 50 nm and VF = 0.1 .

Fig. 5
Fig. 5

(a) Vertical and (b) horizontal field intensity distribution of E Z around the sensor surface for nanowires with Λ = 50 nm , VF = 0.1 , and d NW = 30 nm . The insets are 2D images obtained from FDTD calculations normalized by the field intensity of 20.

Fig. 6
Fig. 6

Characteristics of (a) SEF and (b) SEF UTV with respect to target localization when a nanowire thickness varies at Λ = 50 nm and VF = 0.9 .

Fig. 7
Fig. 7

(a) Vertical and (b) horizontal field intensity distribution of E Z around the sensor surface for nanowires with Λ = 50 nm , VF = 0.9 , and d NW = 15 nm . The insets are 2D images obtained from FDTD calculations normalized by the field intensity of 20.

Fig. 8
Fig. 8

(a) Resonance angle shift and (b) small-signal sensitivity of a conventional (solid curve) and a nanowire-mediated SPR biosensor (dashed curve) and SEF small (dotted curve) when a refractive index of target analytes bound to the nanowire sidewalls varies from 1.33 to 1.70. Nanowires have a period of Λ = 100 nm , VF = 0.5 , and d NW = 10 nm .

Tables (2)

Tables Icon

Table 1 SEF and SEF UTV Values Calculated for Target Attachment of SAM T , SAM B , SAM S , and SAM ALL When Λ = 50 nm and VF = 0.5

Tables Icon

Table 2 SEF and SEF UTV Values Calculated for Target Attachment of SAM T , SAM B , SAM S , and SAM ALL When Λ = 100 nm and VF = 0.5

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k SP = ω c ε m ε d ε m + ε d = k 0 sin θ SPR ,
SEF = Δ θ NWSPR Δ θ SPR = θ NWSPR ( target ) θ NWSPR ( no target ) θ SPR ( target ) θ SPR ( no target ) ,
SEF UTV = Δ θ NWSPR V NWSPR Δ θ SPR V SPR ,
SEF UTV ( SAM ALL ) = Δ θ NWSPR ( Λ + 2 d NW ) Δ θ SPR Λ = SEF ( SAM ALL ) Λ Λ + 2 d NW .
SEF UTV ( SAM T ) = Δ θ NWSPR ( Λ VF ) Δ θ SPR Λ = SEF ( SAM T ) VF ,
SEF UTV ( SAM S ) = Δ θ NWSPR 2 d NW Δ θ SPR Λ = SEF ( SAM S ) Λ 2 d NW ,
SEF UTV ( SAM B ) = Δ θ NWSPR Λ ( 1 VF ) Δ θ SPR Λ = SEF ( SAM B ) 1 VF .

Metrics