Abstract

A new mode of operation of scanning holographic microscopy that combines the two seemingly incompatible holographic advantage and axial sectioning advantage is proposed and demonstrated. Temporally modulated Fabry–Perot fringes are scanned in a two-dimensional raster over the specimen. With a spatially coherent (point) source, the fringes are spatially nonlocalized and encode the entire three-dimensional volume of the specimen in the form of a single-sideband in-line Fresnel hologram. With an extended spatially incoherent source the fringes are axially localized and select the modulated information from a specific axial plane only. The holographic advantage and the sectioning advantage can thus be achieved with the same scanning holographic setup using different source sizes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslawskii, “Reconstruction of a hologram with a computer,” Soviet Phys.-Techn. Phys. 17, 333-334 (1972).
  3. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cell with digital holographic microscopy,” Opt. Express 13, 9361-9373 (2005).
    [CrossRef] [PubMed]
  4. E. Cuche, F. Bevilaqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  5. P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cell with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005).
    [CrossRef] [PubMed]
  6. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  7. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6543 (2005).
    [CrossRef] [PubMed]
  8. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744-1760 (2008).
    [CrossRef]
  9. D. Gabor, “A new microscopic principle,” Nature 4098, 777-778 (1948).
    [CrossRef]
  10. O. Ersoy, “One-image-only digital holography,” Optik (Jena) 53, 47-62 (1979).
  11. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klayes, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
    [CrossRef] [PubMed]
  12. R. B. Owen and A. A. Zozulya, “In-line digital holgraphic sensor for monitoring and characterizing marine particulates,” Opt. Eng. (Bellingham) 38, 2187-2197 (2000).
    [CrossRef]
  13. J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
    [CrossRef]
  14. S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
    [CrossRef]
  15. H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 36, 10729-10741 (2001).
    [CrossRef]
  16. T.-C. Poon and A. Korpel, “Optical transfer function of an acousto-optic heterodyning image processor,” Opt. Lett. 4, 317-319 (1979).
    [CrossRef] [PubMed]
  17. A. W. Lohmann and W. T. Rhodes, “Two-pupil synthesis of optical transfer functions,” Appl. Opt. 17, 1141-1150 (1978).
    [CrossRef] [PubMed]
  18. B. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, and M. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
    [CrossRef]
  19. G. Indebetouw and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23, 1699-1707 (2006).
    [CrossRef]
  20. G. Indebetouw, Y. Tada, R. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993-1000 (2007).
    [CrossRef] [PubMed]
  21. J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express 14, 4280-4285 (2006).
    [CrossRef]
  22. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  23. G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assessment,” Biomed. Eng. Online 5:63, 1-7 (2006).
    [CrossRef]
  24. G. Indebetouw, P. K. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380-390 (2000).
    [CrossRef]
  25. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912-914 (2007).
    [CrossRef] [PubMed]
  26. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190-195 (2008).
    [CrossRef]
  27. P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images: an overview,” IEEE Signal Process. Mag. 23, 32-45 (2006).
    [CrossRef]
  28. E. H. K. Stelzer, “Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15-24 (1997).
    [CrossRef]
  29. P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50-61 (1999).
    [CrossRef]
  30. P. J. Shaw, “Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging,” in Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995). pp.373-387
  31. J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002).
    [CrossRef] [PubMed]
  32. M. A. A. Neil, R. Justaikis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
    [CrossRef]
  33. M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999).
    [CrossRef]
  34. C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14, 7198-7209 (2006).
    [CrossRef] [PubMed]
  35. G. Indebetouw, A. El Maghnouji, and R. Foster, “Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus,” J. Opt. Soc. Am. A 22, 892-898 (2005).
    [CrossRef]
  36. G. Indebetouw, W. Zhong, and D. Chamberlin-Long, “Point-spread-function synthesis in scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 1708-1717 (2006).
    [CrossRef]
  37. G. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).
  38. T. Kim, “Optical sectioning by optical scanning holography and a Wiener filter,” Appl. Opt. 45, 872-879 (2006).
    [CrossRef] [PubMed]
  39. G. Indebetouw, “A posteriori quasi-sectioning of the three-dimensional reconstructions of scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 2657-2661 (2006).
    [CrossRef]
  40. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am. 54, 240-244 (1964).
    [CrossRef]

2008 (2)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190-195 (2008).
[CrossRef]

P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. A 25, 1744-1760 (2008).
[CrossRef]

2007 (2)

2006 (10)

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klayes, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

T. Kim, “Optical sectioning by optical scanning holography and a Wiener filter,” Appl. Opt. 45, 872-879 (2006).
[CrossRef] [PubMed]

J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express 14, 4280-4285 (2006).
[CrossRef]

G. Indebetouw and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23, 1699-1707 (2006).
[CrossRef]

G. Indebetouw, W. Zhong, and D. Chamberlin-Long, “Point-spread-function synthesis in scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 1708-1717 (2006).
[CrossRef]

C. Ventalon and J. Mertz, “Dynamic speckle illumination microscopy with translated versus randomized speckle patterns,” Opt. Express 14, 7198-7209 (2006).
[CrossRef] [PubMed]

G. Indebetouw, “A posteriori quasi-sectioning of the three-dimensional reconstructions of scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 2657-2661 (2006).
[CrossRef]

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images: an overview,” IEEE Signal Process. Mag. 23, 32-45 (2006).
[CrossRef]

G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assessment,” Biomed. Eng. Online 5:63, 1-7 (2006).
[CrossRef]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

2005 (4)

2002 (1)

J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002).
[CrossRef] [PubMed]

2001 (2)

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 36, 10729-10741 (2001).
[CrossRef]

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

2000 (2)

R. B. Owen and A. A. Zozulya, “In-line digital holgraphic sensor for monitoring and characterizing marine particulates,” Opt. Eng. (Bellingham) 38, 2187-2197 (2000).
[CrossRef]

G. Indebetouw, P. K. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380-390 (2000).
[CrossRef]

1999 (4)

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

E. Cuche, F. Bevilaqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[CrossRef]

M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999).
[CrossRef]

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50-61 (1999).
[CrossRef]

1997 (4)

1979 (2)

1978 (1)

1972 (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslawskii, “Reconstruction of a hologram with a computer,” Soviet Phys.-Techn. Phys. 17, 333-334 (1972).

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1964 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 4098, 777-778 (1948).
[CrossRef]

Alexander, S.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Andrews, P. D.

J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002).
[CrossRef] [PubMed]

Bastiaens, P. I. H.

M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999).
[CrossRef]

Bevilaqua, F.

Brooker, G.

Carl, D.

Chamberlin-Long, D.

Colomb, T.

Crayg, G.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Cuche, E.

Depeursinge, C.

El Maghnouji, A.

Emery, Y.

Ersoy, O.

O. Ersoy, “One-image-only digital holography,” Optik (Jena) 53, 47-62 (1979).

Foster, R.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 4098, 777-778 (1948).
[CrossRef]

Garcia-Sucerquia, J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klayes, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Gemkow, M. J.

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50-61 (1999).
[CrossRef]

Goodman, G. W.

G. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Hareid, H.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Hendry, D. C.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Hobson, P. R.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Hu, K.

J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002).
[CrossRef] [PubMed]

Indebetouw, G.

G. Indebetouw, Y. Tada, R. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993-1000 (2007).
[CrossRef] [PubMed]

G. Indebetouw, “A posteriori quasi-sectioning of the three-dimensional reconstructions of scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 2657-2661 (2006).
[CrossRef]

G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assessment,” Biomed. Eng. Online 5:63, 1-7 (2006).
[CrossRef]

G. Indebetouw and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23, 1699-1707 (2006).
[CrossRef]

G. Indebetouw, W. Zhong, and D. Chamberlin-Long, “Point-spread-function synthesis in scanning holographic microscopy,” J. Opt. Soc. Am. A 23, 1708-1717 (2006).
[CrossRef]

J. Rosen, G. Indebetouw, and G. Brooker, “Homodyne scanning holography,” Opt. Express 14, 4280-4285 (2006).
[CrossRef]

G. Indebetouw, A. El Maghnouji, and R. Foster, “Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus,” J. Opt. Soc. Am. A 22, 892-898 (2005).
[CrossRef]

G. Indebetouw, P. K. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380-390 (2000).
[CrossRef]

B. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, and M. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

Jericho, M. H.

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klayes, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

Jericho, M. J.

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 36, 10729-10741 (2001).
[CrossRef]

Jericho, S. K.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klayes, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Jovin, T. M.

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50-61 (1999).
[CrossRef]

Justaikis, R.

M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999).
[CrossRef]

M. A. A. Neil, R. Justaikis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

Kemper, B.

Kim, T.

Klayes, P.

Klysubun, P. K.

Korpel, A.

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klayes, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 36, 10729-10741 (2001).
[CrossRef]

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslawskii, “Reconstruction of a hologram with a computer,” Soviet Phys.-Techn. Phys. 17, 333-334 (1972).

Lampitt, R. S.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Leacock, J.

G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assessment,” Biomed. Eng. Online 5:63, 1-7 (2006).
[CrossRef]

Leval, J.

Lohmann, A. W.

Magistretti, P.

Magistretti, P. J.

Marquet, P.

Marteau, J. M.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

McCutchen, C. W.

Meinertzhagen, I. A.

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 36, 10729-10741 (2001).
[CrossRef]

Mertz, J.

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslawskii, “Reconstruction of a hologram with a computer,” Soviet Phys.-Techn. Phys. 17, 333-334 (1972).

Murray, J. M.

J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002).
[CrossRef] [PubMed]

Nehorai, A.

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images: an overview,” IEEE Signal Process. Mag. 23, 32-45 (2006).
[CrossRef]

Neil, M. A. A.

M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999).
[CrossRef]

M. A. A. Neil, R. Justaikis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

Owen, R. B.

R. B. Owen and A. A. Zozulya, “In-line digital holgraphic sensor for monitoring and characterizing marine particulates,” Opt. Eng. (Bellingham) 38, 2187-2197 (2000).
[CrossRef]

Picart, P.

Player, M. A.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Poon, T.-C.

Rappaz, B.

Rhodes, W. T.

Roos, D. S.

J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002).
[CrossRef] [PubMed]

Rosen, J.

Rosen, R.

Sarder, P.

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images: an overview,” IEEE Signal Process. Mag. 23, 32-45 (2006).
[CrossRef]

Saw, K.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Schilling, B.

Shaw, P. J.

P. J. Shaw, “Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging,” in Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995). pp.373-387

Shinoda, K.

Squire, A.

M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999).
[CrossRef]

Stelzer, E. H. K.

E. H. K. Stelzer, “Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15-24 (1997).
[CrossRef]

Storrie, B.

Swedlow, J. R.

J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002).
[CrossRef] [PubMed]

Tada, Y.

G. Indebetouw, Y. Tada, R. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993-1000 (2007).
[CrossRef] [PubMed]

G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assessment,” Biomed. Eng. Online 5:63, 1-7 (2006).
[CrossRef]

Tipping, K.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Ventalon, C.

Verveer, P. J.

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50-61 (1999).
[CrossRef]

von Bally, G.

Watson, J.

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Wernicke, G.

Wilson, T.

M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999).
[CrossRef]

M. A. A. Neil, R. Justaikis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905-1907 (1997).
[CrossRef]

Wu, M.

Xu, W.

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klayes, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 36, 10729-10741 (2001).
[CrossRef]

Yamaguchi, I.

Yaroslawskii, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslawskii, “Reconstruction of a hologram with a computer,” Soviet Phys.-Techn. Phys. 17, 333-334 (1972).

Zhang, T.

Zhong, W.

Zozulya, A. A.

R. B. Owen and A. A. Zozulya, “In-line digital holgraphic sensor for monitoring and characterizing marine particulates,” Opt. Eng. (Bellingham) 38, 2187-2197 (2000).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

Biomed. Eng. Online (1)

G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assessment,” Biomed. Eng. Online 5:63, 1-7 (2006).
[CrossRef]

IEEE Signal Process. Mag. (1)

P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images: an overview,” IEEE Signal Process. Mag. 23, 32-45 (2006).
[CrossRef]

J. Microsc. (3)

E. H. K. Stelzer, “Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15-24 (1997).
[CrossRef]

P. J. Verveer, M. J. Gemkow, and T. M. Jovin, “A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy,” J. Microsc. 193, 50-61 (1999).
[CrossRef]

M. A. A. Neil, A. Squire, R. Justaikis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1-4 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

J. Phys. Condens. Matter (1)

H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 36, 10729-10741 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

J. Watson, S. Alexander, G. Crayg, D. C. Hendry, P. R. Hobson, R. S. Lampitt, J. M. Marteau, H. Hareid, M. A. Player, K. Saw, and K. Tipping, “Simultaneous in-line and off-axis subsea holographic recording of plankton and other marine particles,” Meas. Sci. Technol. 12, L9-L15 (2001).
[CrossRef]

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190-195 (2008).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 4098, 777-778 (1948).
[CrossRef]

Opt. Eng. (Bellingham) (1)

R. B. Owen and A. A. Zozulya, “In-line digital holgraphic sensor for monitoring and characterizing marine particulates,” Opt. Eng. (Bellingham) 38, 2187-2197 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Optik (Jena) (1)

O. Ersoy, “One-image-only digital holography,” Optik (Jena) 53, 47-62 (1979).

Proc. Natl. Acad. Sci. U.S.A. (1)

J. R. Swedlow, K. Hu, P. D. Andrews, D. S. Roos, and J. M. Murray, “Measuring tubulin content in toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A. 99, 2014-2019 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006).
[CrossRef]

Soviet Phys.-Techn. Phys. (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslawskii, “Reconstruction of a hologram with a computer,” Soviet Phys.-Techn. Phys. 17, 333-334 (1972).

Other (2)

G. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).

P. J. Shaw, “Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging,” in Handbook of Biological Confocal Microscopy, J.B.Pawley, ed. (Plenum, 1995). pp.373-387

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sketch of the scanning holographic microscopy setup using a Fabry–Perot interferometer to create the Fresnel scanning pattern. With a point source, the fringes are not localized and lead to the recording of a hologram. With an extended incoherent source, the fringes are axially localized in the focal plane of the objective and lead to the recording of a single axial section. For the results of Section 4, the objective was a Mytutoyo 20 × 0.4 NA with a focal length of 1 cm , and the lenses had focal lengths f 1 = 5 and f 2 = 60 cm .

Fig. 2
Fig. 2

Reconstructions of the hologram of a dense sample of 2 μ m diameter fluorescent beads. The reconstructions are focused in the two planes where most of the beads are located: z = 15 and z = 20 μ m . The field is 140 × 140 μ m . The hologram has captured the entire three-dimensional field, but the reconstructions are severely corrupted by the out-of-focus information.

Fig. 3
Fig. 3

Axial sections of the same two planes as shown in Fig. 2 obtained with an extended spatially incoherent source producing an axially localized scanning Fresnel fringe pattern and leading to the hologram of a single axial section without the disturbance of the out-of-focus information.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P ̃ ( ρ , z ) = ( 1 R ) 2 [ δ ( ρ ) + n exp ( in Ω t ) P ̃ n ( ρ , z ) ] Disc ( ρ ρ MAX ) ,
P ̃ n ( ρ , z ) = R n exp ( i 4 π n d λ ) exp [ ( i π n ) λ ( z 0 + z ) ρ 2 ] ,
H ̃ ( ρ ) = d z S ̃ Ω ( ρ , z ) I ̃ ( ρ , z ) ,
S ̃ Ω ( ρ , z ) = [ P ̃ 1 ( ρ , z ) + n P ̃ n + 1 ( ρ , z ) P ̃ n * ( ρ , z ) ] Disc ( ρ ρ MAX )
S ̃ Ω ( ρ , z ) = A exp ( i 4 π d λ ) exp [ i π λ ( z 0 + z ) ρ 2 ] Disc ( ρ ρ MAX ) ,
R ̃ COH ( ρ , z , z R ) = d z I ̃ ( ρ , z ) exp [ i π λ ( z z R ) ρ 2 ] Disc ( ρ ρ MAX ) ,
S ̃ INCOH ( ρ , z ) I ̃ ( ρ , 0 ) δ ( z ) Disc ( ρ ρ MAX ) .
Δ z = λ [ ( sin α ) ( sin β ) ] ,

Metrics