Abstract

We systematized the study of the effect of glare on reaction time (RT), for visual conditions similar to the ones found during night driving: Mesopic range of adaptation (0.14cdm2), glare levels of the order of those produced by car headlights (EG=15, 60 lx), suprathreshold luminance contrasts, and a variety of spatial frequencies covering the selected range of visibility (1, 2, 4, and 8cdeg). We found that for the no-glare situation, RT increases with decreasing contrast and increasing spatial frequency, which agrees with previous findings. When data are plotted as a function of the inverse of contrast, RT varies linearly, with k—the RT-contrast factor of Pieron’s law—representing the slope of the lines. The effect of glare on RT is an increase in the slope of these lines. This effect is different for each spatial frequency, which cannot be accounted for in the classic approach considering that glare can be replaced by a single veiling luminance. We show that the effect of glare on RT must be modeled by an equivalent glare luminance that depends on spatial frequency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. L. Holladay, “The fundamentals of glare and visibility,” J. Opt. Soc. Am. 12, 271-319 (1926).
    [CrossRef]
  2. CIE Collection on Glare, “CIE equations for disability glare,” Report No. 146 (Commission Internationale de l'Éclairage, 2002).
  3. J. F. Barraza and E. M. Colombo, “Transient glare: Its effect on the lower threshold of motion,” Opt. Express 7, 172-177 (2000).
    [CrossRef] [PubMed]
  4. J. F. Barraza and E. M. Colombo, “The time course of the lower threshold of motion during rapid events of adaptation,” Vision Res. 41, 1139-1144 (2001).
    [CrossRef] [PubMed]
  5. E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposures to glare on brightness perception at the scotopic-mesopic range,” Light. Res. Technol. 32, 65-69 (2000).
    [CrossRef]
  6. L. A. Issolio, J. F. Barraza, and E. M. Colombo, “The time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233-238 (2006).
    [CrossRef]
  7. L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: The effect of transient glare,” Percept. Psychophys. 68, 702-709 (2006).
    [CrossRef] [PubMed]
  8. J. J. Vos, “Disability glare: A state of the art report,” CIE J. 3, 39-53 (1984).
  9. P. R. Boyce and M. S. Rea, “Plateau and escarpment: The shape of visual performance,” in Proceedings of the 21st Annual Session of CIE (CIE, 1987), pp. 82-85.
  10. M. R. Rea and M. J. Ouellette, “Relative visual performance: A basis for applications,” Light. Res. Technol. 20, 139-153 (1988).
    [CrossRef]
  11. R. S. Hartwell and D. M. Levi, “Reaction times as a measure of suprathreshold grating detection,” Vision Res. 18, 1579-1586 (1978).
    [CrossRef]
  12. A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461-2466 (1993).
    [CrossRef] [PubMed]
  13. S. M. Menees, “The effect of spatial frequency adaptation on the latency of spatial contrast detection,” Vision Res. 38, 3933-3942 (1998).
    [CrossRef]
  14. J. P. Thomas, P. Fagerholm, and C. Bonnet, “One spatial filter limits speed of detecting low and middle frequency gratings,” Vision Res. 39, 1683-1693 (1999).
    [CrossRef] [PubMed]
  15. I. J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707-2719 (2003).
    [CrossRef] [PubMed]
  16. S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: Effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555-1564 (2000).
    [CrossRef] [PubMed]
  17. H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmic Physiol. Opt. 26, 288-299 (2006).
    [CrossRef] [PubMed]
  18. D. Pelli and L. Zhang, “Accurrate control of contrast on microcomputer displays,” Vision Res. 31, 1337-1350 (1991).
    [CrossRef] [PubMed]
  19. A. Vassilev, M. Mihaylova, and C. Bonnet, “On the delay in processing high spatial frequency visual information: Reaction time and VEP latency study of the effect of local intensity of stimulation,” Vision Res. 42, 851-864 (2002).
    [CrossRef] [PubMed]
  20. Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures, Wiley Series in Probability and Statistics (Wiley, 1987).
    [CrossRef]
  21. K. Donner and P. Fagerholm, “Visual reaction time: Neural conditions for the equivalence of stimulus area and contrast,” Vision Res. 43, 2937-2940 (2003).
    [CrossRef] [PubMed]
  22. A. Vassilev, “Visual reaction time to grating onset,” Vision Res. 43, 2941-2943 (2003).
    [CrossRef]
  23. S. Plainis and I. J. Murray, “Magnocellular channel subserves the human contrast-sensitivity function,” Perception 34, 933-940 (2005).
    [CrossRef] [PubMed]
  24. L. E. Paulsson and J. Sjostrand, “Contrast sensitivity in the presence of a glare light. Theoretical concepts and preliminary clinical studies,” Invest. Ophthalmol. Visual Sci. 19, 401-406 (1980).
  25. M. Abrahamsson and J. Sjostrand, “Impairment of contrast sensitivity function (CSF) as a measure of disability glare,” Invest. Ophthalmol. Visual Sci. 27, 1131-1136 (1986).

2006 (3)

L. A. Issolio, J. F. Barraza, and E. M. Colombo, “The time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233-238 (2006).
[CrossRef]

L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: The effect of transient glare,” Percept. Psychophys. 68, 702-709 (2006).
[CrossRef] [PubMed]

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmic Physiol. Opt. 26, 288-299 (2006).
[CrossRef] [PubMed]

2005 (1)

S. Plainis and I. J. Murray, “Magnocellular channel subserves the human contrast-sensitivity function,” Perception 34, 933-940 (2005).
[CrossRef] [PubMed]

2003 (3)

K. Donner and P. Fagerholm, “Visual reaction time: Neural conditions for the equivalence of stimulus area and contrast,” Vision Res. 43, 2937-2940 (2003).
[CrossRef] [PubMed]

A. Vassilev, “Visual reaction time to grating onset,” Vision Res. 43, 2941-2943 (2003).
[CrossRef]

I. J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707-2719 (2003).
[CrossRef] [PubMed]

2002 (2)

CIE Collection on Glare, “CIE equations for disability glare,” Report No. 146 (Commission Internationale de l'Éclairage, 2002).

A. Vassilev, M. Mihaylova, and C. Bonnet, “On the delay in processing high spatial frequency visual information: Reaction time and VEP latency study of the effect of local intensity of stimulation,” Vision Res. 42, 851-864 (2002).
[CrossRef] [PubMed]

2001 (1)

J. F. Barraza and E. M. Colombo, “The time course of the lower threshold of motion during rapid events of adaptation,” Vision Res. 41, 1139-1144 (2001).
[CrossRef] [PubMed]

2000 (3)

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposures to glare on brightness perception at the scotopic-mesopic range,” Light. Res. Technol. 32, 65-69 (2000).
[CrossRef]

J. F. Barraza and E. M. Colombo, “Transient glare: Its effect on the lower threshold of motion,” Opt. Express 7, 172-177 (2000).
[CrossRef] [PubMed]

S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: Effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555-1564 (2000).
[CrossRef] [PubMed]

1999 (1)

J. P. Thomas, P. Fagerholm, and C. Bonnet, “One spatial filter limits speed of detecting low and middle frequency gratings,” Vision Res. 39, 1683-1693 (1999).
[CrossRef] [PubMed]

1998 (1)

S. M. Menees, “The effect of spatial frequency adaptation on the latency of spatial contrast detection,” Vision Res. 38, 3933-3942 (1998).
[CrossRef]

1993 (1)

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461-2466 (1993).
[CrossRef] [PubMed]

1991 (1)

D. Pelli and L. Zhang, “Accurrate control of contrast on microcomputer displays,” Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

1988 (1)

M. R. Rea and M. J. Ouellette, “Relative visual performance: A basis for applications,” Light. Res. Technol. 20, 139-153 (1988).
[CrossRef]

1987 (2)

P. R. Boyce and M. S. Rea, “Plateau and escarpment: The shape of visual performance,” in Proceedings of the 21st Annual Session of CIE (CIE, 1987), pp. 82-85.

Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures, Wiley Series in Probability and Statistics (Wiley, 1987).
[CrossRef]

1986 (1)

M. Abrahamsson and J. Sjostrand, “Impairment of contrast sensitivity function (CSF) as a measure of disability glare,” Invest. Ophthalmol. Visual Sci. 27, 1131-1136 (1986).

1984 (1)

J. J. Vos, “Disability glare: A state of the art report,” CIE J. 3, 39-53 (1984).

1980 (1)

L. E. Paulsson and J. Sjostrand, “Contrast sensitivity in the presence of a glare light. Theoretical concepts and preliminary clinical studies,” Invest. Ophthalmol. Visual Sci. 19, 401-406 (1980).

1978 (1)

R. S. Hartwell and D. M. Levi, “Reaction times as a measure of suprathreshold grating detection,” Vision Res. 18, 1579-1586 (1978).
[CrossRef]

1926 (1)

Abrahamsson, M.

M. Abrahamsson and J. Sjostrand, “Impairment of contrast sensitivity function (CSF) as a measure of disability glare,” Invest. Ophthalmol. Visual Sci. 27, 1131-1136 (1986).

Artigas, J. M.

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461-2466 (1993).
[CrossRef] [PubMed]

Barbur, J. L.

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmic Physiol. Opt. 26, 288-299 (2006).
[CrossRef] [PubMed]

Barraza, J. F.

L. A. Issolio, J. F. Barraza, and E. M. Colombo, “The time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233-238 (2006).
[CrossRef]

J. F. Barraza and E. M. Colombo, “The time course of the lower threshold of motion during rapid events of adaptation,” Vision Res. 41, 1139-1144 (2001).
[CrossRef] [PubMed]

J. F. Barraza and E. M. Colombo, “Transient glare: Its effect on the lower threshold of motion,” Opt. Express 7, 172-177 (2000).
[CrossRef] [PubMed]

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposures to glare on brightness perception at the scotopic-mesopic range,” Light. Res. Technol. 32, 65-69 (2000).
[CrossRef]

Bonnet, C.

A. Vassilev, M. Mihaylova, and C. Bonnet, “On the delay in processing high spatial frequency visual information: Reaction time and VEP latency study of the effect of local intensity of stimulation,” Vision Res. 42, 851-864 (2002).
[CrossRef] [PubMed]

J. P. Thomas, P. Fagerholm, and C. Bonnet, “One spatial filter limits speed of detecting low and middle frequency gratings,” Vision Res. 39, 1683-1693 (1999).
[CrossRef] [PubMed]

Boyce, P. R.

P. R. Boyce and M. S. Rea, “Plateau and escarpment: The shape of visual performance,” in Proceedings of the 21st Annual Session of CIE (CIE, 1987), pp. 82-85.

Buades, M. J.

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461-2466 (1993).
[CrossRef] [PubMed]

Colombo, E. M.

L. A. Issolio, J. F. Barraza, and E. M. Colombo, “The time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233-238 (2006).
[CrossRef]

L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: The effect of transient glare,” Percept. Psychophys. 68, 702-709 (2006).
[CrossRef] [PubMed]

J. F. Barraza and E. M. Colombo, “The time course of the lower threshold of motion during rapid events of adaptation,” Vision Res. 41, 1139-1144 (2001).
[CrossRef] [PubMed]

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposures to glare on brightness perception at the scotopic-mesopic range,” Light. Res. Technol. 32, 65-69 (2000).
[CrossRef]

J. F. Barraza and E. M. Colombo, “Transient glare: Its effect on the lower threshold of motion,” Opt. Express 7, 172-177 (2000).
[CrossRef] [PubMed]

Donner, K.

K. Donner and P. Fagerholm, “Visual reaction time: Neural conditions for the equivalence of stimulus area and contrast,” Vision Res. 43, 2937-2940 (2003).
[CrossRef] [PubMed]

Fagerholm, P.

K. Donner and P. Fagerholm, “Visual reaction time: Neural conditions for the equivalence of stimulus area and contrast,” Vision Res. 43, 2937-2940 (2003).
[CrossRef] [PubMed]

J. P. Thomas, P. Fagerholm, and C. Bonnet, “One spatial filter limits speed of detecting low and middle frequency gratings,” Vision Res. 39, 1683-1693 (1999).
[CrossRef] [PubMed]

Felipe, A.

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461-2466 (1993).
[CrossRef] [PubMed]

Harlow, J. A.

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmic Physiol. Opt. 26, 288-299 (2006).
[CrossRef] [PubMed]

Hartwell, R. S.

R. S. Hartwell and D. M. Levi, “Reaction times as a measure of suprathreshold grating detection,” Vision Res. 18, 1579-1586 (1978).
[CrossRef]

Hochberg, Y.

Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures, Wiley Series in Probability and Statistics (Wiley, 1987).
[CrossRef]

Holladay, L. L.

Issolio, L. A.

L. A. Issolio, J. F. Barraza, and E. M. Colombo, “The time course of brightness under transient glare condition,” J. Opt. Soc. Am. A 23, 233-238 (2006).
[CrossRef]

L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: The effect of transient glare,” Percept. Psychophys. 68, 702-709 (2006).
[CrossRef] [PubMed]

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposures to glare on brightness perception at the scotopic-mesopic range,” Light. Res. Technol. 32, 65-69 (2000).
[CrossRef]

Levi, D. M.

R. S. Hartwell and D. M. Levi, “Reaction times as a measure of suprathreshold grating detection,” Vision Res. 18, 1579-1586 (1978).
[CrossRef]

Menees, S. M.

S. M. Menees, “The effect of spatial frequency adaptation on the latency of spatial contrast detection,” Vision Res. 38, 3933-3942 (1998).
[CrossRef]

Mihaylova, M.

A. Vassilev, M. Mihaylova, and C. Bonnet, “On the delay in processing high spatial frequency visual information: Reaction time and VEP latency study of the effect of local intensity of stimulation,” Vision Res. 42, 851-864 (2002).
[CrossRef] [PubMed]

Murray, I. J.

S. Plainis and I. J. Murray, “Magnocellular channel subserves the human contrast-sensitivity function,” Perception 34, 933-940 (2005).
[CrossRef] [PubMed]

I. J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707-2719 (2003).
[CrossRef] [PubMed]

S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: Effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555-1564 (2000).
[CrossRef] [PubMed]

Ouellette, M. J.

M. R. Rea and M. J. Ouellette, “Relative visual performance: A basis for applications,” Light. Res. Technol. 20, 139-153 (1988).
[CrossRef]

Paulsson, L. E.

L. E. Paulsson and J. Sjostrand, “Contrast sensitivity in the presence of a glare light. Theoretical concepts and preliminary clinical studies,” Invest. Ophthalmol. Visual Sci. 19, 401-406 (1980).

Pelli, D.

D. Pelli and L. Zhang, “Accurrate control of contrast on microcomputer displays,” Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

Plainis, S.

S. Plainis and I. J. Murray, “Magnocellular channel subserves the human contrast-sensitivity function,” Perception 34, 933-940 (2005).
[CrossRef] [PubMed]

I. J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707-2719 (2003).
[CrossRef] [PubMed]

S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: Effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555-1564 (2000).
[CrossRef] [PubMed]

Rea, M. R.

M. R. Rea and M. J. Ouellette, “Relative visual performance: A basis for applications,” Light. Res. Technol. 20, 139-153 (1988).
[CrossRef]

Rea, M. S.

P. R. Boyce and M. S. Rea, “Plateau and escarpment: The shape of visual performance,” in Proceedings of the 21st Annual Session of CIE (CIE, 1987), pp. 82-85.

Sjostrand, J.

M. Abrahamsson and J. Sjostrand, “Impairment of contrast sensitivity function (CSF) as a measure of disability glare,” Invest. Ophthalmol. Visual Sci. 27, 1131-1136 (1986).

L. E. Paulsson and J. Sjostrand, “Contrast sensitivity in the presence of a glare light. Theoretical concepts and preliminary clinical studies,” Invest. Ophthalmol. Visual Sci. 19, 401-406 (1980).

Tamhane, A. C.

Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures, Wiley Series in Probability and Statistics (Wiley, 1987).
[CrossRef]

Thomas, J. P.

J. P. Thomas, P. Fagerholm, and C. Bonnet, “One spatial filter limits speed of detecting low and middle frequency gratings,” Vision Res. 39, 1683-1693 (1999).
[CrossRef] [PubMed]

Vassilev, A.

A. Vassilev, “Visual reaction time to grating onset,” Vision Res. 43, 2941-2943 (2003).
[CrossRef]

A. Vassilev, M. Mihaylova, and C. Bonnet, “On the delay in processing high spatial frequency visual information: Reaction time and VEP latency study of the effect of local intensity of stimulation,” Vision Res. 42, 851-864 (2002).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, “Disability glare: A state of the art report,” CIE J. 3, 39-53 (1984).

Walkey, H. C.

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmic Physiol. Opt. 26, 288-299 (2006).
[CrossRef] [PubMed]

Zhang, L.

D. Pelli and L. Zhang, “Accurrate control of contrast on microcomputer displays,” Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

CIE J. (1)

J. J. Vos, “Disability glare: A state of the art report,” CIE J. 3, 39-53 (1984).

Invest. Ophthalmol. Visual Sci. (2)

L. E. Paulsson and J. Sjostrand, “Contrast sensitivity in the presence of a glare light. Theoretical concepts and preliminary clinical studies,” Invest. Ophthalmol. Visual Sci. 19, 401-406 (1980).

M. Abrahamsson and J. Sjostrand, “Impairment of contrast sensitivity function (CSF) as a measure of disability glare,” Invest. Ophthalmol. Visual Sci. 27, 1131-1136 (1986).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Light. Res. Technol. (2)

M. R. Rea and M. J. Ouellette, “Relative visual performance: A basis for applications,” Light. Res. Technol. 20, 139-153 (1988).
[CrossRef]

E. M. Colombo, J. F. Barraza, and L. A. Issolio, “Effect of brief exposures to glare on brightness perception at the scotopic-mesopic range,” Light. Res. Technol. 32, 65-69 (2000).
[CrossRef]

Neuropsychologia (1)

S. Plainis and I. J. Murray, “Neurophysiological interpretation of human visual reaction times: Effect of contrast, spatial frequency and luminance,” Neuropsychologia 38, 1555-1564 (2000).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

H. C. Walkey, J. A. Harlow, and J. L. Barbur, “Changes in reaction time and search time with background luminance in the mesopic range,” Ophthalmic Physiol. Opt. 26, 288-299 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Percept. Psychophys. (1)

L. A. Issolio and E. M. Colombo, “Brightness for different surround conditions: The effect of transient glare,” Percept. Psychophys. 68, 702-709 (2006).
[CrossRef] [PubMed]

Perception (1)

S. Plainis and I. J. Murray, “Magnocellular channel subserves the human contrast-sensitivity function,” Perception 34, 933-940 (2005).
[CrossRef] [PubMed]

Vision Res. (10)

K. Donner and P. Fagerholm, “Visual reaction time: Neural conditions for the equivalence of stimulus area and contrast,” Vision Res. 43, 2937-2940 (2003).
[CrossRef] [PubMed]

A. Vassilev, “Visual reaction time to grating onset,” Vision Res. 43, 2941-2943 (2003).
[CrossRef]

J. F. Barraza and E. M. Colombo, “The time course of the lower threshold of motion during rapid events of adaptation,” Vision Res. 41, 1139-1144 (2001).
[CrossRef] [PubMed]

D. Pelli and L. Zhang, “Accurrate control of contrast on microcomputer displays,” Vision Res. 31, 1337-1350 (1991).
[CrossRef] [PubMed]

A. Vassilev, M. Mihaylova, and C. Bonnet, “On the delay in processing high spatial frequency visual information: Reaction time and VEP latency study of the effect of local intensity of stimulation,” Vision Res. 42, 851-864 (2002).
[CrossRef] [PubMed]

R. S. Hartwell and D. M. Levi, “Reaction times as a measure of suprathreshold grating detection,” Vision Res. 18, 1579-1586 (1978).
[CrossRef]

A. Felipe, M. J. Buades, and J. M. Artigas, “Influence of the contrast sensitivity function on reaction time,” Vision Res. 33, 2461-2466 (1993).
[CrossRef] [PubMed]

S. M. Menees, “The effect of spatial frequency adaptation on the latency of spatial contrast detection,” Vision Res. 38, 3933-3942 (1998).
[CrossRef]

J. P. Thomas, P. Fagerholm, and C. Bonnet, “One spatial filter limits speed of detecting low and middle frequency gratings,” Vision Res. 39, 1683-1693 (1999).
[CrossRef] [PubMed]

I. J. Murray and S. Plainis, “Contrast coding and magno/parvo segregation revealed in reaction time studies,” Vision Res. 43, 2707-2719 (2003).
[CrossRef] [PubMed]

Other (3)

Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures, Wiley Series in Probability and Statistics (Wiley, 1987).
[CrossRef]

CIE Collection on Glare, “CIE equations for disability glare,” Report No. 146 (Commission Internationale de l'Éclairage, 2002).

P. R. Boyce and M. S. Rea, “Plateau and escarpment: The shape of visual performance,” in Proceedings of the 21st Annual Session of CIE (CIE, 1987), pp. 82-85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental layout: The observer is 1.5 m from display. θ = 10 ° .

Fig. 2
Fig. 2

RT as a function of the reciprocal of contrast (1/C) for the three levels of glare [ E G = 0 (◼), 15 (●) and 60 (▲) lx]. Different panels show data for different subjects (columns) and spatial frequencies (rows). Each data point represents the mean of 30 measurements and the error bars are ± 1 SE.

Fig. 3
Fig. 3

RT as a function of the reciprocal of the effective contrast ( 1 C eff ) calculated with the Lv obtained from the Stiles–Holladay formula [Eq. (1)], for the three levels of glare [ E G = 0 (◼), 15 (●), and 60 (▲) lx]. Different panels show data for different subjects (columns) and spatial frequencies (rows).

Fig. 4
Fig. 4

RT as a function of the reciprocal of the effective contrast ( 1 C eff , Lg ) calculated with Lg, which was obtained by fitting the model of Plainis and Murray [16] [see Eq. (5)], for the three levels of glare [ E G = 0 (◼), 15 (●), and 60 (▲) lx]. Different panels show data for different subjects (columns) and spatial frequencies (rows).

Fig. 5
Fig. 5

RT as a function of the reciprocal of the product of contrast and the sinusoidal grating period [ 1 ( C × P ) ] for the four spatial frequencies. Different panels show data for different subjects (columns) and different glare levels (rows).

Fig. 6
Fig. 6

1 k as a function of spatial frequency for the three levels of glare and subjects.

Tables (3)

Tables Icon

Table 1 Values of k and RT0 (and the Corresponding Standard Error, SE) for the Range of Spatial Frequencies and Levels of Glare Tested for Each Subject

Tables Icon

Table 2 Results of the Statistical Analysis Testing the Hypothesis That Glare Increases the Slope of the Lines ( k ) without Affecting the Intercept (RT0) a

Tables Icon

Table 3 Values of Lg for the Range of Spatial Frequencies and Levels of Glare Tested

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Lv = 10 E G θ 2 , 1 ° < θ < 30 ° ,
RT = RT0 + k 1 C ,
C eff = ( L max + L v ) ( L min + L v ) ( L max + L v ) + ( L min + L v ) = L max L min L max + L min + 2 L v ,
RT = ( RT 0 0 + 5 f 20 log L ) + 1 C 10 ( 0.12 + 0.09 f 0.42 log L ) .
Arg min L g i = 1 N c { RT i [ RT 0 0 + 5 f 20 log ( L + L g ) ] + 1 C i 10 ( 0.12 + 0.09 f 0.42 log ( L + L g ) ) } 2 ,

Metrics