Abstract

Traditionally, thresholds for detecting photometric changes have been measured by using stimuli such as disks or gratings and accounted for in terms of relatively low-level mechanisms in the visual pathway. Therefore one might not expect the higher-order structures that characterize natural scenes to influence thresholds for detecting uniform photometric changes. We compared thresholds for detecting uniform photometric changes for natural and phase-scrambled versions of images of natural scenes. The chromaticity and luminance of every pixel was represented as a vector in a modified version of the MacLeod–Boynton color space and was translated, rotated, or compressed within that color space. Thresholds for all types of transformation were significantly lower in the raw compared with phase-scrambled scenes, and we attribute this to the influence of higher-order structure.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283-3298 (1997).
    [CrossRef]
  2. D. H. Brainard, M. D. Rutherford, and J. M. Kraft, “Color constancy compared: experiments with real images and color monitors,” Invest. Ophthalmol. Visual Sci. 38, 2206-2206 (1997).
  3. C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
    [CrossRef] [PubMed]
  4. D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
    [CrossRef] [PubMed]
  5. L. N. Piotrowski and F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337-346 (1982).
    [CrossRef] [PubMed]
  6. J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982).
    [CrossRef] [PubMed]
  7. D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036-2045 (1998).
    [CrossRef]
  8. I. Fine, A. R. Wade, A. A. Brewer, M. G. May, D. F. Goodman, G. M. Boynton, B. A. Wandell, and D. I. A. MacLeod, “Long-term deprivation affects visual perception and cortex,” Nat. Neurosci. 6, 915-916 (2003).
    [CrossRef] [PubMed]
  9. M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).
  10. A. Olmos and A. A. Frederick, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004).
    [CrossRef]
  11. A. P. Johnson, F. Kingdom, and C. J. Baker, “Spatiochromatic statistics of natural scenes: first-and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050-2059 (2005).
    [CrossRef]
  12. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).
  13. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215-243 (1968).
  14. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).
  15. D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172-1180 (1988).
    [PubMed]
  16. A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841-856 (1988).
    [CrossRef] [PubMed]
  17. M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633-2646 (1997).
    [CrossRef]
  18. B. A. Wandell, “Color measurement and discrimination,” J. Opt. Soc. Am. A 2, 62-71 (1985).
    [CrossRef] [PubMed]
  19. J. Krauskopf, Q. Zaidi, and M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752-1757 (1986).
    [CrossRef] [PubMed]
  20. G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38-51 (1993).
    [CrossRef] [PubMed]
  21. K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136-3151 (1994).
    [CrossRef]
  22. K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733-745 (1999).
    [CrossRef] [PubMed]
  23. K. K. De Valois and E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,” J. Opt. Soc. Am. 73, 11-18 (1983).
    [CrossRef] [PubMed]
  24. E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149-1162 (1988).
    [CrossRef] [PubMed]
  25. C. Blakemore and E. A. Tobin, “Lateral inhibition between orientation detectors in the cat's visual cortex,” Exp. Brain Res. 15, 439-440 (1972).
    [CrossRef] [PubMed]
  26. J. I. Nelson and B. J. Frost, “Orientation-selective inhibition from beyond the classic visual receptive field,” Brain Res. 139, 359-365 (1978).
    [CrossRef] [PubMed]
  27. J. J. Knierim and D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961-980 (1992).
    [PubMed]
  28. A. M. Slllito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davls, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
    [CrossRef]
  29. J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530-2546 (2002).
    [CrossRef] [PubMed]
  30. J. B. Levitt and J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73-76 (1997).
    [CrossRef] [PubMed]
  31. H. C. Nothdurft, J. L. Gallant, and D. C. Van Essen, “Response modulation by texture surround in primate area V1: correlates of 'popout' under anesthesia,” Visual Neurosci. 16, 15-34 (1999).
    [CrossRef]
  32. H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011-2028 (2001).
    [PubMed]
  33. H. Yao and C. Y. Li, “Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex,” Neuron 35, 547-553 (2002).
    [CrossRef] [PubMed]
  34. D. Smyth, B. Willmore, G. E. Baker, I. D. Thompson, and D. J. Tolhurst, “The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation,” J. Neurosci. 23, 4746-4759 (2003).
    [PubMed]
  35. K. Zipser, V. A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
    [PubMed]
  36. N. Petkov and M. A. Westenberg, “Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition,” Biol. Cybern. 88, 236-246 (2003).
    [CrossRef] [PubMed]
  37. C. Grigorescu, N. Petkov, and M. A. Westenberg, “Contour and boundary detection improved by surround suppression of texture edges,” Image Vis. Comput. 22, 609-622 (2004).
    [CrossRef]
  38. H. B. Barlow, “Single units and sensation: a neuron doctrine for perceptual psychology,” Perception 1, 371-394 (1972).
    [CrossRef] [PubMed]
  39. H. Barlow, “Redundancy reduction revisited,” Network Comput. Neural Syst. 12, 241-253 (2001).
    [CrossRef]
  40. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987).
    [CrossRef] [PubMed]
  41. D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559-601 (1994).
    [CrossRef]
  42. B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311-3325 (1997).
    [CrossRef]
  43. B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14, 481-487 (2004).
    [CrossRef] [PubMed]
  44. M. G. A. Thomson, “High-order structure in natural scenes,” J. Opt. Soc. Am. A 16, 1549-1553 (1999).
    [CrossRef]
  45. M. G. A. Thomson, “Beats, kurtosis and visual coding,” Network Comput. Neural Syst. 12, 271-287 (2001).
    [CrossRef]
  46. H. von Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867).
  47. D. H. Foster, “Does colour constancy exist,” Trends Cogn. Sci. 7, 439-443 (2003).
    [CrossRef] [PubMed]
  48. H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346 (2005).
    [CrossRef] [PubMed]
  49. Q. Zaidi, “Color constancy in a rough world,” Color Res. Appl. 26, S192-S200 (2001).
    [CrossRef]
  50. J. Schubert and A. L. Gilchrist, “Relative luminance is not derived from absolute luminance,” Invest. Ophthalmol. Visual Sci. Abstract Book 2826-3, 1258 (1992).
  51. F. A. A. Kingdom, D. J. Field, and A. Olmos, “Does spatial invariance result from insensitivity to change?” J. Vision 7, 1-13 (2007).
    [CrossRef]
  52. M. Bhalla and D. R. Proffitt, “Visual-motor recalibration in geographical slant perception,” J. Exp. Psychol. Hum. Percept. Perform. 25, 1076-1096 (1999).
    [CrossRef] [PubMed]
  53. A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795-834 (1999).
    [CrossRef] [PubMed]
  54. M. D. Rutherford and D. H. Brainard, “Lightness constancy: A direct test of the illumination-estimation hypothesis,” Psychol. Sci. 13, 142-149 (2002).
    [CrossRef] [PubMed]
  55. K. Amano, D. H. Foster, and S. M. C. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Visual Neurosci. 23, 351-356 (2006).
    [CrossRef]
  56. J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637-640 (2002).
    [CrossRef] [PubMed]
  57. L. T. Maloney, “Illuminant estimation as cue combination,” J. Vision 2, 493-504 (2002).
    [CrossRef]
  58. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge U. Press, 1985).
  59. F. A. A. Kingdom, D. J. Field, and A. Olmos, “Does spatial invariance result from insensitivity to change,” J. Vision 7, 1-13 (2004).
  60. A. Yoonessi and F. A. A. Kingdom, “Faithful reproduction of colours on a CRT monitor,” Color Res. Appl. 32, 388-393 (2007).
    [CrossRef]
  61. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975).
    [CrossRef] [PubMed]
  62. E. W. Weisstein, MathWorld-A Wolfram Web Resource, (CRC Press, 2004).
  63. R. M. Boynton, “Implications of the minimally distinct border,” J. Opt. Soc. Am. 63, 1037-1043 (1973).
    [CrossRef] [PubMed]
  64. F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001).
    [CrossRef]
  65. N. Prins, Department of Psychology, University of Mississipi, University, Miss. 38677 (personal communication, 2007).
  66. E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” IEEE Comput. Graphics Appl. 21, 34-41 (2001).
    [CrossRef]
  67. B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1,” Vision Res. 37, 3311-3325 (1997).
    [CrossRef]
  68. E. P. Simoncelli, “Statistical models for images: compression, restoration and synthesis,” in 31st Asilomar Conference on Signals, Systems, and Computers (IEEE, 1997), pp. 673-678.

2007

F. A. A. Kingdom, D. J. Field, and A. Olmos, “Does spatial invariance result from insensitivity to change?” J. Vision 7, 1-13 (2007).
[CrossRef]

A. Yoonessi and F. A. A. Kingdom, “Faithful reproduction of colours on a CRT monitor,” Color Res. Appl. 32, 388-393 (2007).
[CrossRef]

2006

K. Amano, D. H. Foster, and S. M. C. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Visual Neurosci. 23, 351-356 (2006).
[CrossRef]

2005

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346 (2005).
[CrossRef] [PubMed]

A. P. Johnson, F. Kingdom, and C. J. Baker, “Spatiochromatic statistics of natural scenes: first-and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050-2059 (2005).
[CrossRef]

2004

A. Olmos and A. A. Frederick, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004).
[CrossRef]

B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14, 481-487 (2004).
[CrossRef] [PubMed]

C. Grigorescu, N. Petkov, and M. A. Westenberg, “Contour and boundary detection improved by surround suppression of texture edges,” Image Vis. Comput. 22, 609-622 (2004).
[CrossRef]

F. A. A. Kingdom, D. J. Field, and A. Olmos, “Does spatial invariance result from insensitivity to change,” J. Vision 7, 1-13 (2004).

2003

D. Smyth, B. Willmore, G. E. Baker, I. D. Thompson, and D. J. Tolhurst, “The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation,” J. Neurosci. 23, 4746-4759 (2003).
[PubMed]

N. Petkov and M. A. Westenberg, “Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition,” Biol. Cybern. 88, 236-246 (2003).
[CrossRef] [PubMed]

D. H. Foster, “Does colour constancy exist,” Trends Cogn. Sci. 7, 439-443 (2003).
[CrossRef] [PubMed]

I. Fine, A. R. Wade, A. A. Brewer, M. G. May, D. F. Goodman, G. M. Boynton, B. A. Wandell, and D. I. A. MacLeod, “Long-term deprivation affects visual perception and cortex,” Nat. Neurosci. 6, 915-916 (2003).
[CrossRef] [PubMed]

2002

M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
[CrossRef] [PubMed]

J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530-2546 (2002).
[CrossRef] [PubMed]

H. Yao and C. Y. Li, “Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex,” Neuron 35, 547-553 (2002).
[CrossRef] [PubMed]

M. D. Rutherford and D. H. Brainard, “Lightness constancy: A direct test of the illumination-estimation hypothesis,” Psychol. Sci. 13, 142-149 (2002).
[CrossRef] [PubMed]

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637-640 (2002).
[CrossRef] [PubMed]

L. T. Maloney, “Illuminant estimation as cue combination,” J. Vision 2, 493-504 (2002).
[CrossRef]

2001

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” IEEE Comput. Graphics Appl. 21, 34-41 (2001).
[CrossRef]

H. Barlow, “Redundancy reduction revisited,” Network Comput. Neural Syst. 12, 241-253 (2001).
[CrossRef]

M. G. A. Thomson, “Beats, kurtosis and visual coding,” Network Comput. Neural Syst. 12, 271-287 (2001).
[CrossRef]

Q. Zaidi, “Color constancy in a rough world,” Color Res. Appl. 26, S192-S200 (2001).
[CrossRef]

H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011-2028 (2001).
[PubMed]

1999

H. C. Nothdurft, J. L. Gallant, and D. C. Van Essen, “Response modulation by texture surround in primate area V1: correlates of 'popout' under anesthesia,” Visual Neurosci. 16, 15-34 (1999).
[CrossRef]

K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733-745 (1999).
[CrossRef] [PubMed]

M. G. A. Thomson, “High-order structure in natural scenes,” J. Opt. Soc. Am. A 16, 1549-1553 (1999).
[CrossRef]

M. Bhalla and D. R. Proffitt, “Visual-motor recalibration in geographical slant perception,” J. Exp. Psychol. Hum. Percept. Perform. 25, 1076-1096 (1999).
[CrossRef] [PubMed]

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

1998

1997

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283-3298 (1997).
[CrossRef]

D. H. Brainard, M. D. Rutherford, and J. M. Kraft, “Color constancy compared: experiments with real images and color monitors,” Invest. Ophthalmol. Visual Sci. 38, 2206-2206 (1997).

M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633-2646 (1997).
[CrossRef]

J. B. Levitt and J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73-76 (1997).
[CrossRef] [PubMed]

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1,” Vision Res. 37, 3311-3325 (1997).
[CrossRef]

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311-3325 (1997).
[CrossRef]

1996

K. Zipser, V. A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
[PubMed]

1995

A. M. Slllito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davls, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef]

1994

1993

1992

J. J. Knierim and D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961-980 (1992).
[PubMed]

D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

1988

D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172-1180 (1988).
[PubMed]

A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841-856 (1988).
[CrossRef] [PubMed]

E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149-1162 (1988).
[CrossRef] [PubMed]

1987

1986

1985

1983

1982

L. N. Piotrowski and F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337-346 (1982).
[CrossRef] [PubMed]

J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982).
[CrossRef] [PubMed]

1978

J. I. Nelson and B. J. Frost, “Orientation-selective inhibition from beyond the classic visual receptive field,” Brain Res. 139, 359-365 (1978).
[CrossRef] [PubMed]

1975

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

1973

1972

H. B. Barlow, “Single units and sensation: a neuron doctrine for perceptual psychology,” Perception 1, 371-394 (1972).
[CrossRef] [PubMed]

C. Blakemore and E. A. Tobin, “Lateral inhibition between orientation detectors in the cat's visual cortex,” Exp. Brain Res. 15, 439-440 (1972).
[CrossRef] [PubMed]

1969

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).

1968

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215-243 (1968).

1962

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).

Adv. Neural Inf. Process. Syst.

M. F. Tappen, W. T. Freeman, and E. H. Adelson, “Recovering intrinsic images from a single image,” Adv. Neural Inf. Process. Syst. 15, 1459-1472 (2002).

Biol. Cybern.

J. M. Rubin and W. A. Richards, “Color vision and image intensities: when are changes material?” Biol. Cybern. 45, 215-226 (1982).
[CrossRef] [PubMed]

N. Petkov and M. A. Westenberg, “Suppression of contour perception by band-limited noise and its relation to nonclassical receptive field inhibition,” Biol. Cybern. 88, 236-246 (2003).
[CrossRef] [PubMed]

Brain Res.

J. I. Nelson and B. J. Frost, “Orientation-selective inhibition from beyond the classic visual receptive field,” Brain Res. 139, 359-365 (1978).
[CrossRef] [PubMed]

Color Res. Appl.

Q. Zaidi, “Color constancy in a rough world,” Color Res. Appl. 26, S192-S200 (2001).
[CrossRef]

A. Yoonessi and F. A. A. Kingdom, “Faithful reproduction of colours on a CRT monitor,” Color Res. Appl. 32, 388-393 (2007).
[CrossRef]

Curr. Biol.

C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483-487 (2002).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol.

B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Curr. Opin. Neurobiol. 14, 481-487 (2004).
[CrossRef] [PubMed]

Exp. Brain Res.

C. Blakemore and E. A. Tobin, “Lateral inhibition between orientation detectors in the cat's visual cortex,” Exp. Brain Res. 15, 439-440 (1972).
[CrossRef] [PubMed]

IEEE Comput. Graphics Appl.

E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” IEEE Comput. Graphics Appl. 21, 34-41 (2001).
[CrossRef]

Image Vis. Comput.

C. Grigorescu, N. Petkov, and M. A. Westenberg, “Contour and boundary detection improved by surround suppression of texture edges,” Image Vis. Comput. 22, 609-622 (2004).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

D. H. Brainard, M. D. Rutherford, and J. M. Kraft, “Color constancy compared: experiments with real images and color monitors,” Invest. Ophthalmol. Visual Sci. 38, 2206-2206 (1997).

J. Exp. Psychol. Hum. Percept. Perform.

M. Bhalla and D. R. Proffitt, “Visual-motor recalibration in geographical slant perception,” J. Exp. Psychol. Hum. Percept. Perform. 25, 1076-1096 (1999).
[CrossRef] [PubMed]

J. Neurophysiol.

H. E. Jones, K. L. Grieve, W. Wang, and A. M. Sillito, “Surround suppression in primate V1,” J. Neurophysiol. 86, 2011-2028 (2001).
[PubMed]

J. J. Knierim and D. C. van Essen, “Neuronal responses to static texture patterns in area V1 of the alert macaque monkey,” J. Neurophysiol. 67, 961-980 (1992).
[PubMed]

J. R. Cavanaugh, W. Bair, and J. A. Movshon, “Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons,” J. Neurophysiol. 88, 2530-2546 (2002).
[CrossRef] [PubMed]

J. Neurosci.

D. Ferster, “Spatially opponent excitation and inhibition in simple cells of the cat visual cortex,” J. Neurosci. 8, 1172-1180 (1988).
[PubMed]

D. Smyth, B. Willmore, G. E. Baker, I. D. Thompson, and D. J. Tolhurst, “The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation,” J. Neurosci. 23, 4746-4759 (2003).
[PubMed]

K. Zipser, V. A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376-7389 (1996).
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

A. P. Johnson, F. Kingdom, and C. J. Baker, “Spatiochromatic statistics of natural scenes: first-and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050-2059 (2005).
[CrossRef]

K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136-3151 (1994).
[CrossRef]

M. G. A. Thomson, “High-order structure in natural scenes,” J. Opt. Soc. Am. A 16, 1549-1553 (1999).
[CrossRef]

D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036-2045 (1998).
[CrossRef]

B. A. Wandell, “Color measurement and discrimination,” J. Opt. Soc. Am. A 2, 62-71 (1985).
[CrossRef] [PubMed]

M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633-2646 (1997).
[CrossRef]

J. Krauskopf, Q. Zaidi, and M. B. Mandler, “Mechanisms of simultaneous color induction,” J. Opt. Soc. Am. A 3, 1752-1757 (1986).
[CrossRef] [PubMed]

D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987).
[CrossRef] [PubMed]

E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149-1162 (1988).
[CrossRef] [PubMed]

G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38-51 (1993).
[CrossRef] [PubMed]

J. Physiol. (London)

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. (London) 195, 215-243 (1968).

C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. (London) 203, 237-260 (1969).

J. Vision

F. A. A. Kingdom, D. J. Field, and A. Olmos, “Does spatial invariance result from insensitivity to change,” J. Vision 7, 1-13 (2004).

F. A. A. Kingdom, D. J. Field, and A. Olmos, “Does spatial invariance result from insensitivity to change?” J. Vision 7, 1-13 (2007).
[CrossRef]

L. T. Maloney, “Illuminant estimation as cue combination,” J. Vision 2, 493-504 (2002).
[CrossRef]

Nat. Neurosci.

I. Fine, A. R. Wade, A. A. Brewer, M. G. May, D. F. Goodman, G. M. Boynton, B. A. Wandell, and D. I. A. MacLeod, “Long-term deprivation affects visual perception and cortex,” Nat. Neurosci. 6, 915-916 (2003).
[CrossRef] [PubMed]

Nature

J. B. Levitt and J. S. Lund, “Contrast dependence of contextual effects in primate visual cortex,” Nature 387, 73-76 (1997).
[CrossRef] [PubMed]

A. M. Slllito, K. L. Grieve, H. E. Jones, J. Cudeiro, and J. Davls, “Visual cortical mechanisms detecting focal orientation discontinuities,” Nature 378, 492-496 (1995).
[CrossRef]

J. Golz and D. I. A. MacLeod, “Influence of scene statistics on colour constancy,” Nature 415, 637-640 (2002).
[CrossRef] [PubMed]

Network Comput. Neural Syst.

H. Barlow, “Redundancy reduction revisited,” Network Comput. Neural Syst. 12, 241-253 (2001).
[CrossRef]

M. G. A. Thomson, “Beats, kurtosis and visual coding,” Network Comput. Neural Syst. 12, 271-287 (2001).
[CrossRef]

Neural Comput.

D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559-601 (1994).
[CrossRef]

Neuron

H. Yao and C. Y. Li, “Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex,” Neuron 35, 547-553 (2002).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt.

D. J. Tolhurst, Y. Tadmor, and T. Chao, “Amplitude spectra of natural images,” Ophthalmic Physiol. Opt. 12, 229-232 (1992).
[CrossRef] [PubMed]

Percept. Psychophys.

F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001).
[CrossRef]

Perception

L. N. Piotrowski and F. W. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337-346 (1982).
[CrossRef] [PubMed]

A. Olmos and A. A. Frederick, “A biologically inspired algorithm for the recovery of shading and reflectance images,” Perception 33, 1463-1473 (2004).
[CrossRef]

H. B. Barlow, “Single units and sensation: a neuron doctrine for perceptual psychology,” Perception 1, 371-394 (1972).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London, Ser. B

H. E. Smithson, “Sensory, computational and cognitive components of human colour constancy,” Philos. Trans. R. Soc. London, Ser. B 360, 1329-1346 (2005).
[CrossRef] [PubMed]

Psychol. Rev.

A. Gilchrist, C. Kossyfidis, F. Bonato, T. Agostini, J. Cataliotti, X. Li, B. Spehar, V. Annan, and E. Economou, “An anchoring theory of lightness perception,” Psychol. Rev. 106, 795-834 (1999).
[CrossRef] [PubMed]

Psychol. Sci.

M. D. Rutherford and D. H. Brainard, “Lightness constancy: A direct test of the illumination-estimation hypothesis,” Psychol. Sci. 13, 142-149 (2002).
[CrossRef] [PubMed]

Trends Cogn. Sci.

D. H. Foster, “Does colour constancy exist,” Trends Cogn. Sci. 7, 439-443 (2003).
[CrossRef] [PubMed]

Vision Res.

M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283-3298 (1997).
[CrossRef]

A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vision Res. 28, 841-856 (1988).
[CrossRef] [PubMed]

K. T. Mullen and M. J. Sankeralli, “Evidence for the stochastic independence of the blue-yellow, red-green and luminance detection mechanisms revealed by subthreshold summation,” Vision Res. 39, 733-745 (1999).
[CrossRef] [PubMed]

V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500nm,” Vision Res. 15, 161-171 (1975).
[CrossRef] [PubMed]

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1?” Vision Res. 37, 3311-3325 (1997).
[CrossRef]

B. A. Olshausen and D. J. Field, “Sparse coding with an overcomplete basis set: a strategy employed by V1,” Vision Res. 37, 3311-3325 (1997).
[CrossRef]

Visual Neurosci.

H. C. Nothdurft, J. L. Gallant, and D. C. Van Essen, “Response modulation by texture surround in primate area V1: correlates of 'popout' under anesthesia,” Visual Neurosci. 16, 15-34 (1999).
[CrossRef]

K. Amano, D. H. Foster, and S. M. C. Nascimento, “Color constancy in natural scenes with and without an explicit illuminant cue,” Visual Neurosci. 23, 351-356 (2006).
[CrossRef]

Other

J. Schubert and A. L. Gilchrist, “Relative luminance is not derived from absolute luminance,” Invest. Ophthalmol. Visual Sci. Abstract Book 2826-3, 1258 (1992).

H. von Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867).

E. P. Simoncelli, “Statistical models for images: compression, restoration and synthesis,” in 31st Asilomar Conference on Signals, Systems, and Computers (IEEE, 1997), pp. 673-678.

N. Prins, Department of Psychology, University of Mississipi, University, Miss. 38677 (personal communication, 2007).

E. W. Weisstein, MathWorld-A Wolfram Web Resource, (CRC Press, 2004).

R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge U. Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Different transformations on a sample image.

Fig. 2
Fig. 2

A, Three sample raw images; B, phase scrambled; C, phase-aligned phase-scrambled; D, reverse; E, raw color transfer.

Fig. 3
Fig. 3

Comparison of percentage correct in raw and phase-scrambled scenes in two transformations, translation in blue–yellow layer on left, and compression of luminance layer on right.

Fig. 4
Fig. 4

Thresholds for different types of transformation–layers in three subjects (Com, compression; RoN, rotation negative; Rot, rotation; Tra, translation; TrN, translation negative).

Fig. 5
Fig. 5

Comparison of thresholds for all six types of images in one subject.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E = n = 1 N i = 1 3 ( p n i q n i ) 2 3 N ,
Amplitude = [ F r ( ω x , ω y ) 2 + F i ( ω x , ω y ) 2 ] ,
Phase = arctan [ F i ( ω x , ω y ) F r ( ω x , ω y ) ] ,
L C = log L log L ¯ , M C = log M log M ¯ ,
S C = log S log S ¯ ,
l ̂ = ( r L ̂ C + M ̂ C ) , α ̂ = ( L ̂ C + M ̂ C 2 S ̂ C ) , β ̂ = ( L ̂ C M ̂ C ) ,

Metrics