Abstract

Although many algorithms are available for full-view photoacoustic tomography (PAT), no exact and stable algorithm for limited-view PAT has been proposed. In this paper the deconvolution reconstruction (DR) algorithm is proposed for both full-view and limited-view PAT. In the DR algorithm, first a new function is constructed from detected photoacoustic signals and approximately simplified, and then the tissue’s electromagnetic absorption is derived from this function on the basis of Fourier-based deconvolution. Computer simulations are carried out to compare the DR algorithm with two popular PAT algorithms, the time-domain reconstruction (TDR) and the filtered back projection (FBP). Although the error of the DR algorithm increases with the size of the detected object, it is shown that the DR algorithm has good precision and strong robustness to noise in the full-view PAT, nearly equivalent to the TDR and FBP. Yet the DR algorithm is more than ten times faster in computation speed. In the limited-view PAT, the DR is superior to the TDR and FBP in terms of both accuracy and robustness to noise.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
    [CrossRef] [PubMed]
  2. K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
    [CrossRef] [PubMed]
  3. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005).
    [CrossRef] [PubMed]
  4. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625-627 (2005).
    [CrossRef] [PubMed]
  5. C.-W. Wei, S.-W. Huang, C.-R. C. Wang, and P.-C. Li, “Photoacoustic flow measurements based on wash-in analysis of gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
    [CrossRef] [PubMed]
  6. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-1-22 (2006).
    [CrossRef]
  7. A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
    [CrossRef]
  8. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
    [CrossRef]
  9. R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).
  10. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
    [CrossRef]
  11. R. A. Kruger, P. Liu, Y. Fang, and C. R. Appledom, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995).
    [CrossRef] [PubMed]
  12. M. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814-822 (2002).
    [CrossRef] [PubMed]
  13. Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry,” IEEE Trans. Med. Imaging 21, 823-828 (2002).
    [CrossRef] [PubMed]
  14. Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829-833 (2002).
    [CrossRef] [PubMed]
  15. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706-1-7 (2005).
    [CrossRef]
  16. K. P. Kostli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899-1908 (2003).
    [CrossRef] [PubMed]
  17. M. Haltmeier, T. Schuster, and O. Scherzer, “Filtered backprojection for thermoacoustic computed tomography in spherical geometry,” Math. Methods Appl. Sci. 28, 1919-1937 (2005).
    [CrossRef]
  18. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878-888 (2006).
    [CrossRef]
  19. L. A. Kunyansky, “Explicit inversion formulae for the spherical mean Radon transform,” Inverse Probl. 23, 373-383 (2007).
    [CrossRef]
  20. Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724-733 (2004).
    [CrossRef] [PubMed]
  21. S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986).
    [CrossRef]
  22. A. Bennia and S. M. Riad, “An optimization technique for iterative frequency-domain deconvolution,” IEEE Trans. Instrum. Meas. 39, 358-362 (1990).
    [CrossRef]
  23. D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, “Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Soc. Am. 117, 2795-2801 (2005).
    [CrossRef] [PubMed]
  24. M. L. Agranovsky and E. T. Quinto, “Injectivity sets for the radon transform over circles and complete systems of radial functions,” J. Funct. Anal. 139, 383-414 (1996).
    [CrossRef]
  25. S. K. Patch, “Thermoacoustic tomography--consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305-2315 (2004).
    [CrossRef] [PubMed]
  26. V. P. Palamodov, “Reconstruction from limited data of arc means,” J. Fourier Anal. Appl. 6, 25-42 (2000).
    [CrossRef]

2007 (3)

C.-W. Wei, S.-W. Huang, C.-R. C. Wang, and P.-C. Li, “Photoacoustic flow measurements based on wash-in analysis of gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).

L. A. Kunyansky, “Explicit inversion formulae for the spherical mean Radon transform,” Inverse Probl. 23, 373-383 (2007).
[CrossRef]

2006 (4)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-1-22 (2006).
[CrossRef]

H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878-888 (2006).
[CrossRef]

K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

2005 (5)

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625-627 (2005).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706-1-7 (2005).
[CrossRef]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005).
[CrossRef] [PubMed]

M. Haltmeier, T. Schuster, and O. Scherzer, “Filtered backprojection for thermoacoustic computed tomography in spherical geometry,” Math. Methods Appl. Sci. 28, 1919-1937 (2005).
[CrossRef]

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, “Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

S. K. Patch, “Thermoacoustic tomography--consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305-2315 (2004).
[CrossRef] [PubMed]

2003 (3)

K. P. Kostli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899-1908 (2003).
[CrossRef] [PubMed]

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
[CrossRef]

2002 (3)

M. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814-822 (2002).
[CrossRef] [PubMed]

Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry,” IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829-833 (2002).
[CrossRef] [PubMed]

2001 (1)

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

2000 (1)

V. P. Palamodov, “Reconstruction from limited data of arc means,” J. Fourier Anal. Appl. 6, 25-42 (2000).
[CrossRef]

1996 (1)

M. L. Agranovsky and E. T. Quinto, “Injectivity sets for the radon transform over circles and complete systems of radial functions,” J. Funct. Anal. 139, 383-414 (1996).
[CrossRef]

1995 (1)

R. A. Kruger, P. Liu, Y. Fang, and C. R. Appledom, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

1990 (1)

A. Bennia and S. M. Riad, “An optimization technique for iterative frequency-domain deconvolution,” IEEE Trans. Instrum. Meas. 39, 358-362 (1990).
[CrossRef]

1986 (1)

S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986).
[CrossRef]

Agranovsky, M. L.

M. L. Agranovsky and E. T. Quinto, “Injectivity sets for the radon transform over circles and complete systems of radial functions,” J. Funct. Anal. 139, 383-414 (1996).
[CrossRef]

Andreev, V. G.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Appledom, C. R.

R. A. Kruger, P. Liu, Y. Fang, and C. R. Appledom, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Beard, P. C.

Bell, B.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Bennia, A.

A. Bennia and S. M. Riad, “An optimization technique for iterative frequency-domain deconvolution,” IEEE Trans. Instrum. Meas. 39, 358-362 (1990).
[CrossRef]

Bitton, R.

R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).

Fang, Y.

R. A. Kruger, P. Liu, Y. Fang, and C. R. Appledom, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Feng, D.

Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry,” IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

Fleming, R. D.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005).
[CrossRef] [PubMed]

Gatalica, Z.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Gu, X.

Haltmeier, M.

M. Haltmeier, T. Schuster, and O. Scherzer, “Filtered backprojection for thermoacoustic computed tomography in spherical geometry,” Math. Methods Appl. Sci. 28, 1919-1937 (2005).
[CrossRef]

Henrichs, P. M.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Hondebrink, E.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Huang, D.-H.

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, “Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef] [PubMed]

Huang, S.-W.

C.-W. Wei, S.-W. Huang, C.-R. C. Wang, and P.-C. Li, “Photoacoustic flow measurements based on wash-in analysis of gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005).
[CrossRef] [PubMed]

Jiang, H.

Karabutov, A. A.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Kolkman, R. G. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Kostli, K. P.

Kruger, R. A.

R. A. Kruger, P. Liu, Y. Fang, and C. R. Appledom, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
[CrossRef]

Kunyansky, L. A.

L. A. Kunyansky, “Explicit inversion formulae for the spherical mean Radon transform,” Inverse Probl. 23, 373-383 (2007).
[CrossRef]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005).
[CrossRef] [PubMed]

Li, M.-L.

R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).

Li, P.-C.

C.-W. Wei, S.-W. Huang, C.-R. C. Wang, and P.-C. Li, “Photoacoustic flow measurements based on wash-in analysis of gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, “Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef] [PubMed]

Liao, C.-K.

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, “Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef] [PubMed]

Liu, P.

R. A. Kruger, P. Liu, Y. Fang, and C. R. Appledom, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Maslov, K.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625-627 (2005).
[CrossRef] [PubMed]

Motamedi, M.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Mul, F. F. M.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005).
[CrossRef] [PubMed]

Oraevsky, A. A.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Palamodov, V. P.

V. P. Palamodov, “Reconstruction from limited data of arc means,” J. Fourier Anal. Appl. 6, 25-42 (2000).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
[CrossRef]

Patch, S. K.

S. K. Patch, “Thermoacoustic tomography--consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305-2315 (2004).
[CrossRef] [PubMed]

Quinto, E. T.

M. L. Agranovsky and E. T. Quinto, “Injectivity sets for the radon transform over circles and complete systems of radial functions,” J. Funct. Anal. 139, 383-414 (1996).
[CrossRef]

Riad, S. M.

A. Bennia and S. M. Riad, “An optimization technique for iterative frequency-domain deconvolution,” IEEE Trans. Instrum. Meas. 39, 358-362 (1990).
[CrossRef]

S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986).
[CrossRef]

Savateeva, E. V.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Scherzer, O.

M. Haltmeier, T. Schuster, and O. Scherzer, “Filtered backprojection for thermoacoustic computed tomography in spherical geometry,” Math. Methods Appl. Sci. 28, 1919-1937 (2005).
[CrossRef]

Schuster, T.

M. Haltmeier, T. Schuster, and O. Scherzer, “Filtered backprojection for thermoacoustic computed tomography in spherical geometry,” Math. Methods Appl. Sci. 28, 1919-1937 (2005).
[CrossRef]

Shung, K. K.

R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).

Singh, H.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Solomatin, S. V.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Song, K. H.

Steenbergen, W.

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625-627 (2005).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
[CrossRef]

Thomsen, S. L.

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

Wang, C.-R. C.

C.-W. Wei, S.-W. Huang, C.-R. C. Wang, and P.-C. Li, “Photoacoustic flow measurements based on wash-in analysis of gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

Wang, L. V.

R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).

K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-1-22 (2006).
[CrossRef]

K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625-627 (2005).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706-1-7 (2005).
[CrossRef]

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
[CrossRef]

M. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814-822 (2002).
[CrossRef] [PubMed]

Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829-833 (2002).
[CrossRef] [PubMed]

Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry,” IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
[CrossRef]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005).
[CrossRef] [PubMed]

Wei, C.-W.

C.-W. Wei, S.-W. Huang, C.-R. C. Wang, and P.-C. Li, “Photoacoustic flow measurements based on wash-in analysis of gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, “Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
[CrossRef]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-1-22 (2006).
[CrossRef]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706-1-7 (2005).
[CrossRef]

M. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814-822 (2002).
[CrossRef] [PubMed]

Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829-833 (2002).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829-833 (2002).
[CrossRef] [PubMed]

Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry,” IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

Yuan, Z.

Zemp, R.

R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. Bennia and S. M. Riad, “An optimization technique for iterative frequency-domain deconvolution,” IEEE Trans. Instrum. Meas. 39, 358-362 (1990).
[CrossRef]

IEEE Trans. Med. Imaging (4)

M. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814-822 (2002).
[CrossRef] [PubMed]

Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry,” IEEE Trans. Med. Imaging 21, 823-828 (2002).
[CrossRef] [PubMed]

Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829-833 (2002).
[CrossRef] [PubMed]

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C.-W. Wei, S.-W. Huang, C.-R. C. Wang, and P.-C. Li, “Photoacoustic flow measurements based on wash-in analysis of gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007).
[CrossRef] [PubMed]

Inverse Probl. (1)

L. A. Kunyansky, “Explicit inversion formulae for the spherical mean Radon transform,” Inverse Probl. 23, 373-383 (2007).
[CrossRef]

J. Acoust. Soc. Am. (1)

D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, “Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Soc. Am. 117, 2795-2801 (2005).
[CrossRef] [PubMed]

J. Fourier Anal. Appl. (1)

V. P. Palamodov, “Reconstruction from limited data of arc means,” J. Fourier Anal. Appl. 6, 25-42 (2000).
[CrossRef]

J. Funct. Anal. (1)

M. L. Agranovsky and E. T. Quinto, “Injectivity sets for the radon transform over circles and complete systems of radial functions,” J. Funct. Anal. 139, 383-414 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Math. Methods Appl. Sci. (1)

M. Haltmeier, T. Schuster, and O. Scherzer, “Filtered backprojection for thermoacoustic computed tomography in spherical geometry,” Math. Methods Appl. Sci. 28, 1919-1937 (2005).
[CrossRef]

Med. Phys. (2)

R. A. Kruger, P. Liu, Y. Fang, and C. R. Appledom, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995).
[CrossRef] [PubMed]

Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

S. K. Patch, “Thermoacoustic tomography--consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305-2315 (2004).
[CrossRef] [PubMed]

Phys. Rev. E (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706-1-7 (2005).
[CrossRef]

Proc. IEEE (1)

S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986).
[CrossRef]

Proc. SPIE (2)

A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001).
[CrossRef]

R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-1-22 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Original image and (b)–(j) reconstructed images of the simulated tissue with different levels of Gaussian noise added (the grayscale denotes the value of the electromagnetic absorption). The three rows from top to bottom, except (a), correspond to reconstructed images with no noise, 6% noise, and 12% noise, respectively. (b), (e), and (h) TDR results, (c), (f), and (i) FBP results, (d), (g), and (j) DR results.

Fig. 2
Fig. 2

PSNR of reconstructed images of square tissues by three algorithms with various r r 0 , with (a) no noise added and (b) 6% noise added.

Fig. 3
Fig. 3

The given electromagnetic absorption distribution (shown by grayscale) of the simulated tissue.

Fig. 4
Fig. 4

Reconstructed images of the tissue (as shown in Fig. 3). The two rows from top to bottom correspond to the scanning angles of 90° (from 0° to 90°) and 135° (from 0° to 135°); the three columns from left to right correspond to the results of the TDR, FBP, and DR.

Fig. 5
Fig. 5

Profiles through the original image (as shown in Fig. 3) and reconstructed images (as shown in Fig. 4) along two transects. (a) 90° scanning, along x = 2.3 mm , (b) 90° scanning, along y = 0 mm , (c) 135° scanning, along x = 2.3 mm , (d) 135° scanning, along y = 0 mm .

Fig. 6
Fig. 6

Reconstructed images of the tissue (as shown in Fig. 3) with 6% noise added. The two rows from top to bottom correspond to the scanning angles of 90° (from 0° to 90°) and 135° (from 0° to 135°), and the three columns from left to right correspond to the results of the TDR, FBP, and DR.

Tables (1)

Tables Icon

Table 1 Time Cost by Three Algorithms with Various Reconstruction Resolutions

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

p ( r , t ) = β 4 π C p d 3 r r r A ( r ) I ( t r r c ) ,
p ( r 0 , t ) = β 4 π C p c t r r 0 = c t A ( r ) t d 2 r .
[ 0 t p ( r 0 , t ) d t ] t = η r r 0 = c t A ( r ) d 2 r ,
S ( r 0 , t ) = [ 0 t p ( r 0 , t ) d t ] t = η r r 0 = c t A ( r ) d 2 r .
C ( r ) = S ( r r r 0 , μ r c ) ,
μ r max r 0 < r < μ + r max r 0 .
C ( r ) = η Ω A ( r ) d 2 r ,
r r r r 0 = r 2 + r 0 2 2 r r r r 0 = r 0 1 2 r r r r 0 + r 2 r 0 2 = r 0 ( 1 r r r r 0 + ϕ ( r , r , r 0 ) ) = r 0 r r r + r 0 ϕ ( r , r , r 0 ) ,
r r = r 2 + r 2 2 r r = r 1 2 r r r 2 + r 2 r 2 = r ( 1 r r r 2 + φ ( r , r ) ) = r r r r + r φ ( r , r ) ,
r r + [ r 0 ϕ ( r , r , r 0 ) r φ ( r , r ) ] = μ r 0 .
C ( r ) = η r r = μ r 0 A ( r ) d 2 r .
A ( r ) h ( r ) = C ( r ) ,
h ( r ) = η r r = μ r 0 δ 3 ( r ) d 2 r = η δ ( r μ + r 0 ) .
A ̃ ( ω ) = C ̃ ( ω ) h ̃ ( ω ) .
A ̃ ( ω ) = C ̃ ( ω ) h ̃ ( ω ) ( 1 + λ h ̃ ( ω ) 2 ) ,
[ a 0 , a 1 , a 2 ] [ h 0 , h 1 , h 2 , h 3 ] = [ c 0 , c 1 , c 2 , c 3 , c 4 , c 5 ] ,
{ a 0 h 0 = c 0 a 0 h 1 + a 1 h 0 = c 1 a 0 h 2 + a 1 h 1 + a 2 h 0 = c 2 } ,
A ( r ) h ( r ) C ( r ) .
S ( r 0 , t ) = [ 0 t p ( r 0 , t ) d t ] t ,

Metrics