Abstract

The light reflected from scarab beetles illuminated with unpolarized white light is analyzed ellipsometrically and displayed as the sum of an elliptically polarized spectrum Ip and an unpolarized spectrum Iu. A chirped stack of chiral resonators, each with a characteristic Bragg wavelength and partial realignment of birefringent material to a fixed axis, is proposed as a model for simulation of both reflection and polarization spectra. Possible mechanisms that effectively eliminate impedance mismatch at the air–elytron interface and allow some beetles to exhibit nearly perfect circularly polarized reflections are discussed. Results are presented for three representative beetles, Ischiosopha bifasciata, which is shown to be a narrowband left-circular polarizer; Chrysophora chrysochlora, a broadband left-circular polarizer; and Chrysina woodi, an elliptical polarizer. The methods that are developed are applicable to the more general problem of synthesis of reflectors with prescribed reflection and polarization spectra.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds and moths," Chem. Rev. (Washington, D.C.) 99, 1935-1961 (1999).
    [CrossRef]
  2. A. R. Parker, "515 million years of structural colour," J. Opt. A, Pure Appl. Opt. 2, R15-R28 (2000).
    [CrossRef]
  3. P. Vukusic, "Natural photonics," Phys. World 17, 35-39 (2004).
  4. K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616 (1996).
    [CrossRef]
  5. Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. (Bellingham) 39, 1863-1868 (2000).
    [CrossRef]
  6. L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
    [CrossRef]
  7. A. A. Michelson, "On metallic colouring in birds and insects," Philos. Mag. 22, 554-567 (1911).
  8. E. B. Britton, The Insects of Australia (CSIRO, 1970), pp. 495-621.
  9. D. H. Goldstein, "Polarization properties of Scarabaeidae," Appl. Opt. 45, 7944-7950 (2006).
    [CrossRef]
  10. A. C. Neville and S. Caveny, "Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals," Biol. Rev. Cambridge Philos. Soc. 44, 531-562 (1969).
    [CrossRef]
  11. I. J. Hodgkinson, Q. H. Wu, L. De Silva, and M. D. Arnold, "Threaded-chiral media: reflectors for elliptically polarized light," Proc. SPIE 5508, 47-56 (2004).
    [CrossRef]
  12. I. J. Hodgkinson, Q. H. Wu, L. De Silva, M. Arnold, A. Lakhtakia, and M. McCall, "Structurally-perturbed chiral Bragg reflectors for elliptically polarized light," Opt. Lett. 30, 2629-2631 (2005).
    [CrossRef] [PubMed]
  13. A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge U. Press, 1993).
    [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  15. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).
  16. Ocean Optics Inc., 830 Douglas Avenue, Dunedin, Florida 34698, USA.
  17. I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
    [CrossRef]
  18. D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, "Unusual coloration in scarabaeid beetles," J. Phys. D 40, 2189-2196 (2007).
    [CrossRef]
  19. A. R. Parker, D. R. McKenzie, and M. C. J. Large, "Multilayer reflectors in animals using green and gold beetles as contrasting examples," J. Exp. Biol. 201, 1307-1313 (1998).
  20. J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, "Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)," Phys. Rev. E 72, 061904 (2005).
    [CrossRef]
  21. I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
    [CrossRef]
  22. L. De Silva, S. Lowrey, I. Hodgkinson, and J. Leader, "Nanoengineered equichiral and ambichiral Bragg reflectors--inspiration from scarab beetles," in Proceedings of 3rd IUPAC-Sponsored International Symposium on Macro and Supramolecular Architectures and Materials (International Union of Pure & Applied Chemistry, 2006), paper OP-46, p. 132.

2007 (1)

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, "Unusual coloration in scarabaeid beetles," J. Phys. D 40, 2189-2196 (2007).
[CrossRef]

2006 (1)

2005 (3)

I. J. Hodgkinson, Q. H. Wu, L. De Silva, M. Arnold, A. Lakhtakia, and M. McCall, "Structurally-perturbed chiral Bragg reflectors for elliptically polarized light," Opt. Lett. 30, 2629-2631 (2005).
[CrossRef] [PubMed]

J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, "Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)," Phys. Rev. E 72, 061904 (2005).
[CrossRef]

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

2004 (2)

P. Vukusic, "Natural photonics," Phys. World 17, 35-39 (2004).

I. J. Hodgkinson, Q. H. Wu, L. De Silva, and M. D. Arnold, "Threaded-chiral media: reflectors for elliptically polarized light," Proc. SPIE 5508, 47-56 (2004).
[CrossRef]

2002 (1)

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

2000 (3)

A. R. Parker, "515 million years of structural colour," J. Opt. A, Pure Appl. Opt. 2, R15-R28 (2000).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. (Bellingham) 39, 1863-1868 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

1999 (1)

M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds and moths," Chem. Rev. (Washington, D.C.) 99, 1935-1961 (1999).
[CrossRef]

1998 (1)

A. R. Parker, D. R. McKenzie, and M. C. J. Large, "Multilayer reflectors in animals using green and gold beetles as contrasting examples," J. Exp. Biol. 201, 1307-1313 (1998).

1996 (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616 (1996).
[CrossRef]

1969 (1)

A. C. Neville and S. Caveny, "Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals," Biol. Rev. Cambridge Philos. Soc. 44, 531-562 (1969).
[CrossRef]

1911 (1)

A. A. Michelson, "On metallic colouring in birds and insects," Philos. Mag. 22, 554-567 (1911).

Arnold, M.

I. J. Hodgkinson, Q. H. Wu, L. De Silva, M. Arnold, A. Lakhtakia, and M. McCall, "Structurally-perturbed chiral Bragg reflectors for elliptically polarized light," Opt. Lett. 30, 2629-2631 (2005).
[CrossRef] [PubMed]

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

Arnold, M. D.

I. J. Hodgkinson, Q. H. Wu, L. De Silva, and M. D. Arnold, "Threaded-chiral media: reflectors for elliptically polarized light," Proc. SPIE 5508, 47-56 (2004).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Brett, M. J.

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616 (1996).
[CrossRef]

Brink, D. J.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, "Unusual coloration in scarabaeid beetles," J. Phys. D 40, 2189-2196 (2007).
[CrossRef]

Britton, E. B.

E. B. Britton, The Insects of Australia (CSIRO, 1970), pp. 495-621.

Caveny, S.

A. C. Neville and S. Caveny, "Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals," Biol. Rev. Cambridge Philos. Soc. 44, 531-562 (1969).
[CrossRef]

Colomer, J.-F.

J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, "Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)," Phys. Rev. E 72, 061904 (2005).
[CrossRef]

De Silva, L.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, L. De Silva, M. Arnold, A. Lakhtakia, and M. McCall, "Structurally-perturbed chiral Bragg reflectors for elliptically polarized light," Opt. Lett. 30, 2629-2631 (2005).
[CrossRef] [PubMed]

I. J. Hodgkinson, Q. H. Wu, L. De Silva, and M. D. Arnold, "Threaded-chiral media: reflectors for elliptically polarized light," Proc. SPIE 5508, 47-56 (2004).
[CrossRef]

L. De Silva, S. Lowrey, I. Hodgkinson, and J. Leader, "Nanoengineered equichiral and ambichiral Bragg reflectors--inspiration from scarab beetles," in Proceedings of 3rd IUPAC-Sponsored International Symposium on Macro and Supramolecular Architectures and Materials (International Union of Pure & Applied Chemistry, 2006), paper OP-46, p. 132.

Goldstein, D. H.

Hodgkinson, I.

L. De Silva, S. Lowrey, I. Hodgkinson, and J. Leader, "Nanoengineered equichiral and ambichiral Bragg reflectors--inspiration from scarab beetles," in Proceedings of 3rd IUPAC-Sponsored International Symposium on Macro and Supramolecular Architectures and Materials (International Union of Pure & Applied Chemistry, 2006), paper OP-46, p. 132.

Hodgkinson, I. J.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, "Unusual coloration in scarabaeid beetles," J. Phys. D 40, 2189-2196 (2007).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, L. De Silva, M. Arnold, A. Lakhtakia, and M. McCall, "Structurally-perturbed chiral Bragg reflectors for elliptically polarized light," Opt. Lett. 30, 2629-2631 (2005).
[CrossRef] [PubMed]

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, L. De Silva, and M. D. Arnold, "Threaded-chiral media: reflectors for elliptically polarized light," Proc. SPIE 5508, 47-56 (2004).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. (Bellingham) 39, 1863-1868 (2000).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).

Lakhtakia, A.

I. J. Hodgkinson, Q. H. Wu, L. De Silva, M. Arnold, A. Lakhtakia, and M. McCall, "Structurally-perturbed chiral Bragg reflectors for elliptically polarized light," Opt. Lett. 30, 2629-2631 (2005).
[CrossRef] [PubMed]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. (Bellingham) 39, 1863-1868 (2000).
[CrossRef]

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616 (1996).
[CrossRef]

Large, M. C. J.

A. R. Parker, D. R. McKenzie, and M. C. J. Large, "Multilayer reflectors in animals using green and gold beetles as contrasting examples," J. Exp. Biol. 201, 1307-1313 (1998).

Leader, J.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

L. De Silva, S. Lowrey, I. Hodgkinson, and J. Leader, "Nanoengineered equichiral and ambichiral Bragg reflectors--inspiration from scarab beetles," in Proceedings of 3rd IUPAC-Sponsored International Symposium on Macro and Supramolecular Architectures and Materials (International Union of Pure & Applied Chemistry, 2006), paper OP-46, p. 132.

Lousse, V.

J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, "Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)," Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Lowrey, S.

L. De Silva, S. Lowrey, I. Hodgkinson, and J. Leader, "Nanoengineered equichiral and ambichiral Bragg reflectors--inspiration from scarab beetles," in Proceedings of 3rd IUPAC-Sponsored International Symposium on Macro and Supramolecular Architectures and Materials (International Union of Pure & Applied Chemistry, 2006), paper OP-46, p. 132.

McCall, M.

McCall, M. W.

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

McKenzie, D. R.

A. R. Parker, D. R. McKenzie, and M. C. J. Large, "Multilayer reflectors in animals using green and gold beetles as contrasting examples," J. Exp. Biol. 201, 1307-1313 (1998).

McNaughton, A.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

Michelson, A. A.

A. A. Michelson, "On metallic colouring in birds and insects," Philos. Mag. 22, 554-567 (1911).

Murray, P.

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

Neville, A. C.

A. C. Neville and S. Caveny, "Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals," Biol. Rev. Cambridge Philos. Soc. 44, 531-562 (1969).
[CrossRef]

A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge U. Press, 1993).
[CrossRef]

Parker, A. R.

A. R. Parker, "515 million years of structural colour," J. Opt. A, Pure Appl. Opt. 2, R15-R28 (2000).
[CrossRef]

A. R. Parker, D. R. McKenzie, and M. C. J. Large, "Multilayer reflectors in animals using green and gold beetles as contrasting examples," J. Exp. Biol. 201, 1307-1313 (1998).

Prinsloo, L. C.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, "Unusual coloration in scarabaeid beetles," J. Phys. D 40, 2189-2196 (2007).
[CrossRef]

Robbie, K.

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616 (1996).
[CrossRef]

Srinivasarao, M.

M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds and moths," Chem. Rev. (Washington, D.C.) 99, 1935-1961 (1999).
[CrossRef]

Thorn, K. E.

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

van, N. G.

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, "Unusual coloration in scarabaeid beetles," J. Phys. D 40, 2189-2196 (2007).
[CrossRef]

Vigneron, J. P.

J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, "Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)," Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Vigneron, N.

J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, "Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)," Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Vukusic, P.

P. Vukusic, "Natural photonics," Phys. World 17, 35-39 (2004).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, L. De Silva, M. Arnold, A. Lakhtakia, and M. McCall, "Structurally-perturbed chiral Bragg reflectors for elliptically polarized light," Opt. Lett. 30, 2629-2631 (2005).
[CrossRef] [PubMed]

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, L. De Silva, and M. D. Arnold, "Threaded-chiral media: reflectors for elliptically polarized light," Proc. SPIE 5508, 47-56 (2004).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. (Bellingham) 39, 1863-1868 (2000).
[CrossRef]

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).

Appl. Opt. (1)

Biol. Rev. Cambridge Philos. Soc. (1)

A. C. Neville and S. Caveny, "Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals," Biol. Rev. Cambridge Philos. Soc. 44, 531-562 (1969).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

M. Srinivasarao, "Nano-optics in the biological world: beetles, butterflies, birds and moths," Chem. Rev. (Washington, D.C.) 99, 1935-1961 (1999).
[CrossRef]

Electromagnetics (1)

L. De Silva, I. J. Hodgkinson, P. Murray, Q. H. Wu, M. Arnold, J. Leader, and A. McNaughton, "Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings," Electromagnetics 25, 391-408 (2005).
[CrossRef]

J. Exp. Biol. (1)

A. R. Parker, D. R. McKenzie, and M. C. J. Large, "Multilayer reflectors in animals using green and gold beetles as contrasting examples," J. Exp. Biol. 201, 1307-1313 (1998).

J. Opt. A, Pure Appl. Opt. (1)

A. R. Parker, "515 million years of structural colour," J. Opt. A, Pure Appl. Opt. 2, R15-R28 (2000).
[CrossRef]

J. Phys. D (1)

D. J. Brink, N. G. van der Berg, L. C. Prinsloo, and I. J. Hodgkinson, "Unusual coloration in scarabaeid beetles," J. Phys. D 40, 2189-2196 (2007).
[CrossRef]

Nature (London) (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, "Chiral sculptured thin films," Nature (London) 384, 616 (1996).
[CrossRef]

Opt. Commun. (2)

I. J. Hodgkinson, Q. H. Wu, K. E. Thorn, A. Lakhtakia, and M. W. McCall, "Spacerless circular-polarization spectral-hole filters using chiral thin films: theory and experiment," Opt. Commun. 184, 57-66 (2000).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. Arnold, M. W. McCall, and A. Lakhtakia, "Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances," Opt. Commun. 210, 201-211 (2002).
[CrossRef]

Opt. Eng. (Bellingham) (1)

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. (Bellingham) 39, 1863-1868 (2000).
[CrossRef]

Opt. Lett. (1)

Philos. Mag. (1)

A. A. Michelson, "On metallic colouring in birds and insects," Philos. Mag. 22, 554-567 (1911).

Phys. Rev. E (1)

J. P. Vigneron, J.-F. Colomer, N. Vigneron, and V. Lousse, "Natural layer-by-layer photonic structure in the squamae of Hoplia coerulea (Coleoptera)," Phys. Rev. E 72, 061904 (2005).
[CrossRef]

Phys. World (1)

P. Vukusic, "Natural photonics," Phys. World 17, 35-39 (2004).

Proc. SPIE (1)

I. J. Hodgkinson, Q. H. Wu, L. De Silva, and M. D. Arnold, "Threaded-chiral media: reflectors for elliptically polarized light," Proc. SPIE 5508, 47-56 (2004).
[CrossRef]

Other (6)

E. B. Britton, The Insects of Australia (CSIRO, 1970), pp. 495-621.

A. C. Neville, Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge U. Press, 1993).
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1998).

Ocean Optics Inc., 830 Douglas Avenue, Dunedin, Florida 34698, USA.

L. De Silva, S. Lowrey, I. Hodgkinson, and J. Leader, "Nanoengineered equichiral and ambichiral Bragg reflectors--inspiration from scarab beetles," in Proceedings of 3rd IUPAC-Sponsored International Symposium on Macro and Supramolecular Architectures and Materials (International Union of Pure & Applied Chemistry, 2006), paper OP-46, p. 132.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Left side, rotating-QWP-fixed polarizer configuration of the spectral ellipsometer used to measure polarized and unpolarized light reflected from beetles illuminated with unpolarized white light. Right side, computational path used to determine corresponding quantities for model coatings.

Fig. 2
Fig. 2

Model used for simulating polarized reflection from scarab beetles is a stack of steadily twisting birefringent layers perturbed by realigning a fraction of each layer to a fixed direction. The order of the resonators, with short wavelength Bragg resonances at the front, applies to C. woodi.

Fig. 3
Fig. 3

Experimental values of the polarized intensity I p (solid curve) and unpolarized intensity I u (dotted curve) recorded for I. bifasciata.

Fig. 4
Fig. 4

Upper left, Chrysophora chrysochlora illuminated with unpolarized white light and photographed without a polarizing filter. Upper right, photograph of the beetle taken through a right-handed filter. Lower, reflections from smooth bulges on the surface recorded with a standard optical microscope fitted with a ring illuminator.

Fig. 5
Fig. 5

Experimental values of I p (solid curve) and I u (dotted curve) recorded for C. chrysochlora.

Fig. 6
Fig. 6

Simulated χ spectra for C. chrysochlora compared with the experimental spectrum, curve (a). Simulation curve (b) applies to an unmatched front interface, (c) to index matching, (d) to an isotropic antireflection coating, and (e) to three-fold structural averaging.

Fig. 7
Fig. 7

Values of the polarized intensity I p simulated for C. chrysochlora.

Fig. 8
Fig. 8

Upper left, Chrysina woodi illuminated with unpolarized white light and photographed without a polarizing filter. Upper right, photograph taken with a right-handed filter. (Lower) Reflections from the bottom of filled surface pits recorded by confocal microscopy.

Fig. 9
Fig. 9

Experimental values of I p (solid curve) and I u (dotted curve) recorded for C. woodi.

Fig. 10
Fig. 10

Experimental values of the auxiliary polarization parameter χ recorded for C. woodi.

Fig. 11
Fig. 11

Upper, target for 21-point simulation of C. woodi. Middle, number of periods, aligned fractions, and Bragg resonances. Lower, simulated reflectance and polarization.

Tables (1)

Tables Icon

Table 1 Summary of Model Parameters

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

s 0 = E Y 2 + E Z 2 ,
s 1 = E Y 2 E Z 2 ,
s 2 = 2 E Y E Z cos Δ ,
s 3 = 2 E Y E Z sin Δ ,
I ( α ) = a 0 + b 2 sin ( 2 α ) + a 4 cos ( 4 α ) + b 4 sin ( 4 α ) ,
s 0 = 2 [ a 0 a 4 tan 2 ( Δ Q 2 ) ] ,
s 1 = 4 a 4 sin 2 ( Δ Q 2 ) ,
s 2 = 4 b 4 sin 2 ( Δ Q 2 ) ,
s 3 = 2 b 2 sin ( Δ Q ) .
I p = ( s 1 2 + s 2 2 + s 3 2 ) 1 2 ,
r ̂ = [ r 11 r 12 r 21 r 22 ]
R ̂ = [ R 11 R 12 R 21 R 22 ]
s 0 = R 11 + R 21 + R 12 + R 22 ,
s 1 = R 11 R 21 + R 12 R 22 ,
s 2 = 2 [ R 11 R 21 cos Δ 1 ] 1 2 + 2 [ R 12 R 22 cos Δ 2 ] 1 2 ,
s 3 = 2 [ R 11 R 21 sin Δ 1 ] 1 2 + 2 [ R 12 R 22 sin Δ 2 ] 1 2 ,
Δ 1 = ( r 11 ) ( r 21 ) ,
Δ 2 = ( r 12 ) ( r 22 )
sin 2 χ = s 3 ( s 1 2 + s 2 2 + s 3 2 ) 1 2 ,
sin 2 ϕ = s 2 s 1 .
n a v = ( n 2 + n 3 ) 2 ,
Δ n = n 3 n 2 ,
λ B r = 2 n a v Ω ,
d = λ B r Δ ξ 2 π n a v .

Metrics