Abstract

Are effects of background contrast on color appearance and sensitivity controlled by the same mechanism of adaptation? We examined the effects of background color contrast on color appearance and on color-difference sensitivity under well-matched conditions. We linked the data using Fechner’s hypothesis that the rate of apparent stimulus change is proportional to sensitivity and examined a family of parametric models of adaptation. Our results show that both appearance and discrimination are consistent with the same mechanism of adaptation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  2. P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996).
  3. R. T. Eskew, J. S. McLellan, and F. Giulianini, "Chromatic detection and discrimination," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 345-368.
  4. J. Hillis and D. H. Brainard, "Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds," J. Opt. Soc. Am. A 22, 2090-2106 (2005).
    [CrossRef]
  5. J. Mollon, "Color vision," Annu. Rev. Psychol. 33, 41-85 (1982).
    [CrossRef] [PubMed]
  6. G. H. Jacobs, Comparative Color Vision (Academic, 1981).
  7. E. Land and J. McCann, "Lightness and retinex theory," J. Opt. Soc. Am. 61, 1-11 (1971).
    [CrossRef] [PubMed]
  8. L. T. Maloney, "Physics-based approaches to modeling surface color perception," in Color Vision: From Genes to Perception, K.T.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 387-416.
  9. D. H. Brainard, "Color constancy," in The Visual Neurosciences, L.Chalupa and J.Werner, eds. (MIT, 2004), Vol. 1, pp. 948-961.
  10. H. Barlow, "Possible principles underlying the transformations of sensory messages," in Sensory Communication, W.Rosenblith, ed. (MIT, 1961), pp. 217-234.
  11. S. Laughlin, "A simple coding procedure enhances a neuron's information capacity," Z. Naturforsch. 36, 910-912 (1981).
  12. H. B. Barlow and P. Foldiak, "Adaptation and decorrelation in the cortex," in The Computing Neuron, C.Miall, R.Durbin, and G.Mitchison, eds. (Addison-Wesley, 1989), pp. 54-72.
  13. A. Abrams, J. Hillis, and D. H. Brainard, "The relation between color discrimination and color constancy: when is optimal adaptation task dependent?" Neural Comput. (to be published).
  14. C. Chubb, G. Sperling, and J. A. Solomon, "Texture interactions determine perceived contrast." Proc. Natl. Acad. Sci. U.S.A. 86, 9631-9635 (1989).
    [CrossRef] [PubMed]
  15. R. O. Brown and D. I. A. MacLeod, "Color appearance depends on the variance of surround colors," Curr. Biol. 7, 844-849 (1997).
    [CrossRef]
  16. M. D'Zmura and B. Singer, "Contast gain control," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999).
  17. J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space." Vision Res. 22, 1123-1131 (1982).
    [CrossRef] [PubMed]
  18. M. Webster and J. Mollon, "Changes in colour appearance following postreceptoral adaptation," Nature 349, 235-238 (1991).
    [CrossRef] [PubMed]
  19. G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
    [CrossRef]
  20. D. J. Heeger, "Normalization of cell responses in cat striate cortex," Visual Neurosci. 9, 181-197 (1992).
    [CrossRef]
  21. K. Naka and W. Rushton, "S-potentials from colour units in the retina of fish (Cyprinidae)," J. Physiol. (London) 185, 536-555 (1966).
  22. G. E. Legge and J. M. Foley, "Contrast masking in human vision," J. Opt. Soc. Am. 70, 1458-1471 (1980).
    [CrossRef]
  23. E. H. Adelson, "Saturation and adaptation in the rod system," Vision Res. 22, 1299-1312 (1982).
    [CrossRef] [PubMed]
  24. W. S. Geisler, "Mechanisms of visual sensitivity: backgrounds and early dark adaptation," Vision Res. 23, 1423-1432 (1983).
    [CrossRef] [PubMed]
  25. J. Foley, "Human luminance pattern-vision mechanisms: masking experiments require a new model," J. Opt. Soc. Am. A 11, 1710-1719 (1994).
    [CrossRef]
  26. G. Fechner, Elements of Psychophysics, Henry Holt Edition in Psychology (Holt, Rinehart & Winston, 1966).
  27. D. Krantz, "Integration of just-noticable differences," J. Math. Psychol. 8, 591-599 (1971).
    [CrossRef]
  28. R. D. Luce and W. Edwards, "The derivation of subjective scales from just noticeable differences," Physiol. Rev. 65, 222-236 (1958).
  29. D. H. Brainard, D. G. Pelli, and T. Robson, "Display characterization," in Encylopedia of Imaging Science and Technology, J.P.Hornak ed. (Wiley, 2002), pp. 72-188.
  30. F. Wichmann and N. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
    [CrossRef]
  31. J. Nachmias and R. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
    [CrossRef] [PubMed]
  32. C. C. Chen, J. M. Foley, and D. H. Brainard, "Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements," Vision Res. 40, 773-788 (2000).
    [CrossRef] [PubMed]
  33. A. G. Shapiro and Q. Zaidi, "The effects of prolonged temporal modulation on the differential response of color mechanisms," Vision Res. 32, 2065-2075 (1992).
    [CrossRef] [PubMed]
  34. Q. Zaidi, B. Spehar, and J. DeBonet, "Adaptation to textured chromatic fields," J. Opt. Soc. Am. A 15, 23-32 (1998).
    [CrossRef]
  35. A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
    [CrossRef] [PubMed]
  36. E. Heinemann, "The relation of apparent brightness to the threshold for differences in luminance," J. Exp. Psychol. 61, 389-399 (1961).
    [CrossRef] [PubMed]
  37. A. J. M. Houtsma, N. I. Durlach, and L. D. Braida, "Intensity perception XI. Experimental results on the relation of intensity resolution to loudness matching," J. Acoust. Soc. Am. 68(3), 807-813 (1980).
    [CrossRef] [PubMed]
  38. J. Hillis and D. H. Brainard, "A shadowy dissociation between discriminability and identity," J. Vision 4, 56a (2004).
    [CrossRef]
  39. I. Myung, M. Forster, and M. Browne, "Guest editor's introduction: special issue on model selection," J. Math. Psychol. 44, 1-2 (2000).
    [CrossRef] [PubMed]
  40. H. Akaike, "A new look at the statistical model identification," IEEE Trans. Autom. Control 19, 716-723 (1974).
    [CrossRef]
  41. G. Schwartz, "Estimating the dimension of a model," Ann. Stat. 6, 461-464 (1978).
    [CrossRef]
  42. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer Series in Statistics (Springer,2001).
  43. K. P. Burnham and D. R. Anderson, Model Selection and Multi-Model Inference (Springer, 2002).
  44. P. Bickel and K. Doksum, Mathematical Statistics (Holden-Day, 1977).
  45. A. E. Rafferty, "Bayesian model selection in social research," Sociol. Methodol. 25, 111-163 (1995).
    [CrossRef]
  46. H. B. Barlow, D. MacLeod, and A. van Meeteeren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
    [CrossRef] [PubMed]
  47. M. J. Wainright, "Visual adaptation as optimal information transmission," Vision Res. 39, 3960-3974 (1999).
    [CrossRef]
  48. P. Whittle, "Brightness, discriminability and the 'crispening effect'," Vision Res. 32, 1493-1507 (1992).
    [CrossRef] [PubMed]
  49. R. W. Rodieck, The First Steps In Seeing (Sinauer, 1998).
  50. D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000).
    [CrossRef] [PubMed]
  51. D. Hubel and T. Wiesel, "Functional architecture of macaque monkey visual cortex," Proc. R. Soc. London, Ser. B 198, 1-59 (1977).
    [CrossRef]
  52. L. Ungerleider and M. Mishkin, "Two cortical visual systems," in Analysis of Visual Behavior, D.J.Ingle, M.A.Goodale, and R.J. W.Mansfield, eds. (MIT, 1982), pp. 549-586.
  53. D. Felleman and D. Van Essen, "Distributed hierarchial processing in the primate cerebral cortex," Cereb. Cortex 1, 1-47 (1991).
    [CrossRef] [PubMed]
  54. In our hands, the common mechanism hypothesis includes the possibility that appearance and sensitivity are mediated by physiologically distinct processing streams that encode and adapt identically. In general, distinguishing two separate physiological mechanisms that behave identically is not possible with psychophysical data alone, and an experimental approach to this possibility would require both physiological data and a sharp theory linking that data to performance on the two types of psychophysical tasks.
  55. M. Cannon and S. Fullenkamp, "Spatial interactions in apparent contrast--inhibitory effects among gratings," Vision Res. 31, 1985-1998 (1991).
    [CrossRef] [PubMed]
  56. B. Singer and M. D'Zmura, "Color contrast induction," Vision Res. 34, 3111-3126 (1994).
    [CrossRef] [PubMed]
  57. J. Loomis and T. Berger, "Effects of chromatic adaptation on color discrimination and color appearance," Vision Res. 19, 891-901 (1979).
    [CrossRef] [PubMed]
  58. E. N. Pugh and J. Larimer, "Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π1 pathway," Vision Res. 20, 779-788 (1980).
    [CrossRef] [PubMed]
  59. J. Walraven, "Perceived color under conditions of chromatic adaptation: evidence for again control by π-mechanisms," Vision Res. 21, 611-620 (1981).
    [CrossRef] [PubMed]
  60. P. Whittle, "Increments and decrements: luminance discrimination," Vision Res. 26, 1677-1691 (1986).
    [CrossRef] [PubMed]
  61. O. Rinner and K. Gegenfurtner, "Time course of chromatic adaptation for color appearance and discrimination," Vision Res. 40, 1813-1826 (2000).
    [CrossRef] [PubMed]
  62. M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
    [CrossRef] [PubMed]
  63. M. A. Webster and J. D. Mollon, "Colour constancy influenced by contrast adaptation," Nature 373, 694-698 (1995).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

J. Hillis and D. H. Brainard, "A shadowy dissociation between discriminability and identity," J. Vision 4, 56a (2004).
[CrossRef]

2003 (1)

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

2001 (1)

F. Wichmann and N. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

2000 (4)

C. C. Chen, J. M. Foley, and D. H. Brainard, "Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements," Vision Res. 40, 773-788 (2000).
[CrossRef] [PubMed]

I. Myung, M. Forster, and M. Browne, "Guest editor's introduction: special issue on model selection," J. Math. Psychol. 44, 1-2 (2000).
[CrossRef] [PubMed]

D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000).
[CrossRef] [PubMed]

O. Rinner and K. Gegenfurtner, "Time course of chromatic adaptation for color appearance and discrimination," Vision Res. 40, 1813-1826 (2000).
[CrossRef] [PubMed]

1999 (1)

M. J. Wainright, "Visual adaptation as optimal information transmission," Vision Res. 39, 3960-3974 (1999).
[CrossRef]

1998 (1)

1997 (1)

R. O. Brown and D. I. A. MacLeod, "Color appearance depends on the variance of surround colors," Curr. Biol. 7, 844-849 (1997).
[CrossRef]

1995 (2)

A. E. Rafferty, "Bayesian model selection in social research," Sociol. Methodol. 25, 111-163 (1995).
[CrossRef]

M. A. Webster and J. D. Mollon, "Colour constancy influenced by contrast adaptation," Nature 373, 694-698 (1995).
[CrossRef] [PubMed]

1994 (3)

J. Foley, "Human luminance pattern-vision mechanisms: masking experiments require a new model," J. Opt. Soc. Am. A 11, 1710-1719 (1994).
[CrossRef]

M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
[CrossRef] [PubMed]

B. Singer and M. D'Zmura, "Color contrast induction," Vision Res. 34, 3111-3126 (1994).
[CrossRef] [PubMed]

1992 (3)

P. Whittle, "Brightness, discriminability and the 'crispening effect'," Vision Res. 32, 1493-1507 (1992).
[CrossRef] [PubMed]

D. J. Heeger, "Normalization of cell responses in cat striate cortex," Visual Neurosci. 9, 181-197 (1992).
[CrossRef]

A. G. Shapiro and Q. Zaidi, "The effects of prolonged temporal modulation on the differential response of color mechanisms," Vision Res. 32, 2065-2075 (1992).
[CrossRef] [PubMed]

1991 (3)

M. Webster and J. Mollon, "Changes in colour appearance following postreceptoral adaptation," Nature 349, 235-238 (1991).
[CrossRef] [PubMed]

D. Felleman and D. Van Essen, "Distributed hierarchial processing in the primate cerebral cortex," Cereb. Cortex 1, 1-47 (1991).
[CrossRef] [PubMed]

M. Cannon and S. Fullenkamp, "Spatial interactions in apparent contrast--inhibitory effects among gratings," Vision Res. 31, 1985-1998 (1991).
[CrossRef] [PubMed]

1989 (2)

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef]

C. Chubb, G. Sperling, and J. A. Solomon, "Texture interactions determine perceived contrast." Proc. Natl. Acad. Sci. U.S.A. 86, 9631-9635 (1989).
[CrossRef] [PubMed]

1986 (1)

P. Whittle, "Increments and decrements: luminance discrimination," Vision Res. 26, 1677-1691 (1986).
[CrossRef] [PubMed]

1983 (1)

W. S. Geisler, "Mechanisms of visual sensitivity: backgrounds and early dark adaptation," Vision Res. 23, 1423-1432 (1983).
[CrossRef] [PubMed]

1982 (3)

J. Mollon, "Color vision," Annu. Rev. Psychol. 33, 41-85 (1982).
[CrossRef] [PubMed]

E. H. Adelson, "Saturation and adaptation in the rod system," Vision Res. 22, 1299-1312 (1982).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space." Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

1981 (2)

S. Laughlin, "A simple coding procedure enhances a neuron's information capacity," Z. Naturforsch. 36, 910-912 (1981).

J. Walraven, "Perceived color under conditions of chromatic adaptation: evidence for again control by π-mechanisms," Vision Res. 21, 611-620 (1981).
[CrossRef] [PubMed]

1980 (3)

E. N. Pugh and J. Larimer, "Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π1 pathway," Vision Res. 20, 779-788 (1980).
[CrossRef] [PubMed]

G. E. Legge and J. M. Foley, "Contrast masking in human vision," J. Opt. Soc. Am. 70, 1458-1471 (1980).
[CrossRef]

A. J. M. Houtsma, N. I. Durlach, and L. D. Braida, "Intensity perception XI. Experimental results on the relation of intensity resolution to loudness matching," J. Acoust. Soc. Am. 68(3), 807-813 (1980).
[CrossRef] [PubMed]

1979 (1)

J. Loomis and T. Berger, "Effects of chromatic adaptation on color discrimination and color appearance," Vision Res. 19, 891-901 (1979).
[CrossRef] [PubMed]

1978 (1)

G. Schwartz, "Estimating the dimension of a model," Ann. Stat. 6, 461-464 (1978).
[CrossRef]

1977 (1)

D. Hubel and T. Wiesel, "Functional architecture of macaque monkey visual cortex," Proc. R. Soc. London, Ser. B 198, 1-59 (1977).
[CrossRef]

1976 (1)

H. B. Barlow, D. MacLeod, and A. van Meeteeren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

1974 (2)

H. Akaike, "A new look at the statistical model identification," IEEE Trans. Autom. Control 19, 716-723 (1974).
[CrossRef]

J. Nachmias and R. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

1971 (2)

D. Krantz, "Integration of just-noticable differences," J. Math. Psychol. 8, 591-599 (1971).
[CrossRef]

E. Land and J. McCann, "Lightness and retinex theory," J. Opt. Soc. Am. 61, 1-11 (1971).
[CrossRef] [PubMed]

1966 (1)

K. Naka and W. Rushton, "S-potentials from colour units in the retina of fish (Cyprinidae)," J. Physiol. (London) 185, 536-555 (1966).

1961 (1)

E. Heinemann, "The relation of apparent brightness to the threshold for differences in luminance," J. Exp. Psychol. 61, 389-399 (1961).
[CrossRef] [PubMed]

1958 (1)

R. D. Luce and W. Edwards, "The derivation of subjective scales from just noticeable differences," Physiol. Rev. 65, 222-236 (1958).

Abrams, A.

A. Abrams, J. Hillis, and D. H. Brainard, "The relation between color discrimination and color constancy: when is optimal adaptation task dependent?" Neural Comput. (to be published).

Adelson, E. H.

E. H. Adelson, "Saturation and adaptation in the rod system," Vision Res. 22, 1299-1312 (1982).
[CrossRef] [PubMed]

Akaike, H.

H. Akaike, "A new look at the statistical model identification," IEEE Trans. Autom. Control 19, 716-723 (1974).
[CrossRef]

Anderson, D. R.

K. P. Burnham and D. R. Anderson, Model Selection and Multi-Model Inference (Springer, 2002).

Barlow, H.

H. Barlow, "Possible principles underlying the transformations of sensory messages," in Sensory Communication, W.Rosenblith, ed. (MIT, 1961), pp. 217-234.

Barlow, H. B.

H. B. Barlow, D. MacLeod, and A. van Meeteeren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

H. B. Barlow and P. Foldiak, "Adaptation and decorrelation in the cortex," in The Computing Neuron, C.Miall, R.Durbin, and G.Mitchison, eds. (Addison-Wesley, 1989), pp. 54-72.

Beere, J. L.

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

Berger, T.

J. Loomis and T. Berger, "Effects of chromatic adaptation on color discrimination and color appearance," Vision Res. 19, 891-901 (1979).
[CrossRef] [PubMed]

Bickel, P.

P. Bickel and K. Doksum, Mathematical Statistics (Holden-Day, 1977).

Boynton, R. M.

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996).

Braida, L. D.

A. J. M. Houtsma, N. I. Durlach, and L. D. Braida, "Intensity perception XI. Experimental results on the relation of intensity resolution to loudness matching," J. Acoust. Soc. Am. 68(3), 807-813 (1980).
[CrossRef] [PubMed]

Brainard, D. H.

J. Hillis and D. H. Brainard, "Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds," J. Opt. Soc. Am. A 22, 2090-2106 (2005).
[CrossRef]

J. Hillis and D. H. Brainard, "A shadowy dissociation between discriminability and identity," J. Vision 4, 56a (2004).
[CrossRef]

C. C. Chen, J. M. Foley, and D. H. Brainard, "Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements," Vision Res. 40, 773-788 (2000).
[CrossRef] [PubMed]

A. Abrams, J. Hillis, and D. H. Brainard, "The relation between color discrimination and color constancy: when is optimal adaptation task dependent?" Neural Comput. (to be published).

D. H. Brainard, "Color constancy," in The Visual Neurosciences, L.Chalupa and J.Werner, eds. (MIT, 2004), Vol. 1, pp. 948-961.

D. H. Brainard, D. G. Pelli, and T. Robson, "Display characterization," in Encylopedia of Imaging Science and Technology, J.P.Hornak ed. (Wiley, 2002), pp. 72-188.

Brown, R. O.

R. O. Brown and D. I. A. MacLeod, "Color appearance depends on the variance of surround colors," Curr. Biol. 7, 844-849 (1997).
[CrossRef]

Browne, M.

I. Myung, M. Forster, and M. Browne, "Guest editor's introduction: special issue on model selection," J. Math. Psychol. 44, 1-2 (2000).
[CrossRef] [PubMed]

Burnham, K. P.

K. P. Burnham and D. R. Anderson, Model Selection and Multi-Model Inference (Springer, 2002).

Cannon, M.

M. Cannon and S. Fullenkamp, "Spatial interactions in apparent contrast--inhibitory effects among gratings," Vision Res. 31, 1985-1998 (1991).
[CrossRef] [PubMed]

Chen, C. C.

C. C. Chen, J. M. Foley, and D. H. Brainard, "Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements," Vision Res. 40, 773-788 (2000).
[CrossRef] [PubMed]

Chubb, C.

C. Chubb, G. Sperling, and J. A. Solomon, "Texture interactions determine perceived contrast." Proc. Natl. Acad. Sci. U.S.A. 86, 9631-9635 (1989).
[CrossRef] [PubMed]

Dacey, D. M.

D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000).
[CrossRef] [PubMed]

DeBonet, J.

DePriest, D.

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef]

Doksum, K.

P. Bickel and K. Doksum, Mathematical Statistics (Holden-Day, 1977).

Durlach, N. I.

A. J. M. Houtsma, N. I. Durlach, and L. D. Braida, "Intensity perception XI. Experimental results on the relation of intensity resolution to loudness matching," J. Acoust. Soc. Am. 68(3), 807-813 (1980).
[CrossRef] [PubMed]

D'Zmura, M.

B. Singer and M. D'Zmura, "Color contrast induction," Vision Res. 34, 3111-3126 (1994).
[CrossRef] [PubMed]

M. D'Zmura and B. Singer, "Contast gain control," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999).

Edwards, W.

R. D. Luce and W. Edwards, "The derivation of subjective scales from just noticeable differences," Physiol. Rev. 65, 222-236 (1958).

Eskew, R. T.

R. T. Eskew, J. S. McLellan, and F. Giulianini, "Chromatic detection and discrimination," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 345-368.

Fechner, G.

G. Fechner, Elements of Psychophysics, Henry Holt Edition in Psychology (Holt, Rinehart & Winston, 1966).

Felleman, D.

D. Felleman and D. Van Essen, "Distributed hierarchial processing in the primate cerebral cortex," Cereb. Cortex 1, 1-47 (1991).
[CrossRef] [PubMed]

Foldiak, P.

H. B. Barlow and P. Foldiak, "Adaptation and decorrelation in the cortex," in The Computing Neuron, C.Miall, R.Durbin, and G.Mitchison, eds. (Addison-Wesley, 1989), pp. 54-72.

Foley, J.

Foley, J. M.

C. C. Chen, J. M. Foley, and D. H. Brainard, "Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements," Vision Res. 40, 773-788 (2000).
[CrossRef] [PubMed]

G. E. Legge and J. M. Foley, "Contrast masking in human vision," J. Opt. Soc. Am. 70, 1458-1471 (1980).
[CrossRef]

Forster, M.

I. Myung, M. Forster, and M. Browne, "Guest editor's introduction: special issue on model selection," J. Math. Psychol. 44, 1-2 (2000).
[CrossRef] [PubMed]

Friedman, J.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer Series in Statistics (Springer,2001).

Fullenkamp, S.

M. Cannon and S. Fullenkamp, "Spatial interactions in apparent contrast--inhibitory effects among gratings," Vision Res. 31, 1985-1998 (1991).
[CrossRef] [PubMed]

Gegenfurtner, K.

O. Rinner and K. Gegenfurtner, "Time course of chromatic adaptation for color appearance and discrimination," Vision Res. 40, 1813-1826 (2000).
[CrossRef] [PubMed]

Geisler, W. S.

W. S. Geisler, "Mechanisms of visual sensitivity: backgrounds and early dark adaptation," Vision Res. 23, 1423-1432 (1983).
[CrossRef] [PubMed]

Giulianini, F.

R. T. Eskew, J. S. McLellan, and F. Giulianini, "Chromatic detection and discrimination," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 345-368.

Hastie, T.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer Series in Statistics (Springer,2001).

Heeger, D. J.

D. J. Heeger, "Normalization of cell responses in cat striate cortex," Visual Neurosci. 9, 181-197 (1992).
[CrossRef]

Heeley, D. W.

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space." Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

Heinemann, E.

E. Heinemann, "The relation of apparent brightness to the threshold for differences in luminance," J. Exp. Psychol. 61, 389-399 (1961).
[CrossRef] [PubMed]

Hill, N.

F. Wichmann and N. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

Hillis, J.

J. Hillis and D. H. Brainard, "Do common mechanisms of adaptation mediate color discrimination and appearance? Uniform backgrounds," J. Opt. Soc. Am. A 22, 2090-2106 (2005).
[CrossRef]

J. Hillis and D. H. Brainard, "A shadowy dissociation between discriminability and identity," J. Vision 4, 56a (2004).
[CrossRef]

A. Abrams, J. Hillis, and D. H. Brainard, "The relation between color discrimination and color constancy: when is optimal adaptation task dependent?" Neural Comput. (to be published).

Houtsma, A. J. M.

A. J. M. Houtsma, N. I. Durlach, and L. D. Braida, "Intensity perception XI. Experimental results on the relation of intensity resolution to loudness matching," J. Acoust. Soc. Am. 68(3), 807-813 (1980).
[CrossRef] [PubMed]

Hubel, D.

D. Hubel and T. Wiesel, "Functional architecture of macaque monkey visual cortex," Proc. R. Soc. London, Ser. B 198, 1-59 (1977).
[CrossRef]

Jacobs, G. H.

G. H. Jacobs, Comparative Color Vision (Academic, 1981).

Kaiser, P. K.

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996).

Krantz, D.

D. Krantz, "Integration of just-noticable differences," J. Math. Psychol. 8, 591-599 (1971).
[CrossRef]

Krauskopf, J.

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space." Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

Land, E.

Larimer, J.

E. N. Pugh and J. Larimer, "Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π1 pathway," Vision Res. 20, 779-788 (1980).
[CrossRef] [PubMed]

Laughlin, S.

S. Laughlin, "A simple coding procedure enhances a neuron's information capacity," Z. Naturforsch. 36, 910-912 (1981).

Legge, G. E.

Lennie, P.

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef]

Loomis, J.

J. Loomis and T. Berger, "Effects of chromatic adaptation on color discrimination and color appearance," Vision Res. 19, 891-901 (1979).
[CrossRef] [PubMed]

Luce, R. D.

R. D. Luce and W. Edwards, "The derivation of subjective scales from just noticeable differences," Physiol. Rev. 65, 222-236 (1958).

MacLeod, D.

H. B. Barlow, D. MacLeod, and A. van Meeteeren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

MacLeod, D. I. A.

R. O. Brown and D. I. A. MacLeod, "Color appearance depends on the variance of surround colors," Curr. Biol. 7, 844-849 (1997).
[CrossRef]

Maloney, L. T.

L. T. Maloney, "Physics-based approaches to modeling surface color perception," in Color Vision: From Genes to Perception, K.T.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 387-416.

McCann, J.

McLellan, J. S.

R. T. Eskew, J. S. McLellan, and F. Giulianini, "Chromatic detection and discrimination," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 345-368.

Mishkin, M.

L. Ungerleider and M. Mishkin, "Two cortical visual systems," in Analysis of Visual Behavior, D.J.Ingle, M.A.Goodale, and R.J. W.Mansfield, eds. (MIT, 1982), pp. 549-586.

Mollon, J.

M. Webster and J. Mollon, "Changes in colour appearance following postreceptoral adaptation," Nature 349, 235-238 (1991).
[CrossRef] [PubMed]

J. Mollon, "Color vision," Annu. Rev. Psychol. 33, 41-85 (1982).
[CrossRef] [PubMed]

Mollon, J. D.

M. A. Webster and J. D. Mollon, "Colour constancy influenced by contrast adaptation," Nature 373, 694-698 (1995).
[CrossRef] [PubMed]

M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
[CrossRef] [PubMed]

Myung, I.

I. Myung, M. Forster, and M. Browne, "Guest editor's introduction: special issue on model selection," J. Math. Psychol. 44, 1-2 (2000).
[CrossRef] [PubMed]

Nachmias, J.

J. Nachmias and R. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

Naka, K.

K. Naka and W. Rushton, "S-potentials from colour units in the retina of fish (Cyprinidae)," J. Physiol. (London) 185, 536-555 (1966).

Pelli, D. G.

D. H. Brainard, D. G. Pelli, and T. Robson, "Display characterization," in Encylopedia of Imaging Science and Technology, J.P.Hornak ed. (Wiley, 2002), pp. 72-188.

Pugh, E. N.

E. N. Pugh and J. Larimer, "Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π1 pathway," Vision Res. 20, 779-788 (1980).
[CrossRef] [PubMed]

Rafferty, A. E.

A. E. Rafferty, "Bayesian model selection in social research," Sociol. Methodol. 25, 111-163 (1995).
[CrossRef]

Rinner, O.

O. Rinner and K. Gegenfurtner, "Time course of chromatic adaptation for color appearance and discrimination," Vision Res. 40, 1813-1826 (2000).
[CrossRef] [PubMed]

Robson, T.

D. H. Brainard, D. G. Pelli, and T. Robson, "Display characterization," in Encylopedia of Imaging Science and Technology, J.P.Hornak ed. (Wiley, 2002), pp. 72-188.

Rodieck, R. W.

R. W. Rodieck, The First Steps In Seeing (Sinauer, 1998).

Rushton, W.

K. Naka and W. Rushton, "S-potentials from colour units in the retina of fish (Cyprinidae)," J. Physiol. (London) 185, 536-555 (1966).

Sansbury, R.

J. Nachmias and R. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

Schwartz, G.

G. Schwartz, "Estimating the dimension of a model," Ann. Stat. 6, 461-464 (1978).
[CrossRef]

Sclar, G.

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef]

Shapiro, A. G.

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

A. G. Shapiro and Q. Zaidi, "The effects of prolonged temporal modulation on the differential response of color mechanisms," Vision Res. 32, 2065-2075 (1992).
[CrossRef] [PubMed]

Singer, B.

B. Singer and M. D'Zmura, "Color contrast induction," Vision Res. 34, 3111-3126 (1994).
[CrossRef] [PubMed]

M. D'Zmura and B. Singer, "Contast gain control," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999).

Solomon, J. A.

C. Chubb, G. Sperling, and J. A. Solomon, "Texture interactions determine perceived contrast." Proc. Natl. Acad. Sci. U.S.A. 86, 9631-9635 (1989).
[CrossRef] [PubMed]

Spehar, B.

Sperling, G.

C. Chubb, G. Sperling, and J. A. Solomon, "Texture interactions determine perceived contrast." Proc. Natl. Acad. Sci. U.S.A. 86, 9631-9635 (1989).
[CrossRef] [PubMed]

Stiles, W.

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Tibshirani, R.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer Series in Statistics (Springer,2001).

Ungerleider, L.

L. Ungerleider and M. Mishkin, "Two cortical visual systems," in Analysis of Visual Behavior, D.J.Ingle, M.A.Goodale, and R.J. W.Mansfield, eds. (MIT, 1982), pp. 549-586.

Van Essen, D.

D. Felleman and D. Van Essen, "Distributed hierarchial processing in the primate cerebral cortex," Cereb. Cortex 1, 1-47 (1991).
[CrossRef] [PubMed]

van Meeteeren, A.

H. B. Barlow, D. MacLeod, and A. van Meeteeren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

Wainright, M. J.

M. J. Wainright, "Visual adaptation as optimal information transmission," Vision Res. 39, 3960-3974 (1999).
[CrossRef]

Walraven, J.

J. Walraven, "Perceived color under conditions of chromatic adaptation: evidence for again control by π-mechanisms," Vision Res. 21, 611-620 (1981).
[CrossRef] [PubMed]

Webster, M.

M. Webster and J. Mollon, "Changes in colour appearance following postreceptoral adaptation," Nature 349, 235-238 (1991).
[CrossRef] [PubMed]

Webster, M. A.

M. A. Webster and J. D. Mollon, "Colour constancy influenced by contrast adaptation," Nature 373, 694-698 (1995).
[CrossRef] [PubMed]

M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
[CrossRef] [PubMed]

Whittle, P.

P. Whittle, "Brightness, discriminability and the 'crispening effect'," Vision Res. 32, 1493-1507 (1992).
[CrossRef] [PubMed]

P. Whittle, "Increments and decrements: luminance discrimination," Vision Res. 26, 1677-1691 (1986).
[CrossRef] [PubMed]

Wichmann, F.

F. Wichmann and N. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

Wiesel, T.

D. Hubel and T. Wiesel, "Functional architecture of macaque monkey visual cortex," Proc. R. Soc. London, Ser. B 198, 1-59 (1977).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space." Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Zaidi, Q.

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

Q. Zaidi, B. Spehar, and J. DeBonet, "Adaptation to textured chromatic fields," J. Opt. Soc. Am. A 15, 23-32 (1998).
[CrossRef]

A. G. Shapiro and Q. Zaidi, "The effects of prolonged temporal modulation on the differential response of color mechanisms," Vision Res. 32, 2065-2075 (1992).
[CrossRef] [PubMed]

Ann. Stat. (1)

G. Schwartz, "Estimating the dimension of a model," Ann. Stat. 6, 461-464 (1978).
[CrossRef]

Annu. Rev. Neurosci. (1)

D. M. Dacey, "Parallel pathways for spectral coding in primate retina," Annu. Rev. Neurosci. 23, 743-775 (2000).
[CrossRef] [PubMed]

Annu. Rev. Psychol. (1)

J. Mollon, "Color vision," Annu. Rev. Psychol. 33, 41-85 (1982).
[CrossRef] [PubMed]

Cereb. Cortex (1)

D. Felleman and D. Van Essen, "Distributed hierarchial processing in the primate cerebral cortex," Cereb. Cortex 1, 1-47 (1991).
[CrossRef] [PubMed]

Curr. Biol. (1)

R. O. Brown and D. I. A. MacLeod, "Color appearance depends on the variance of surround colors," Curr. Biol. 7, 844-849 (1997).
[CrossRef]

IEEE Trans. Autom. Control (1)

H. Akaike, "A new look at the statistical model identification," IEEE Trans. Autom. Control 19, 716-723 (1974).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. J. M. Houtsma, N. I. Durlach, and L. D. Braida, "Intensity perception XI. Experimental results on the relation of intensity resolution to loudness matching," J. Acoust. Soc. Am. 68(3), 807-813 (1980).
[CrossRef] [PubMed]

J. Exp. Psychol. (1)

E. Heinemann, "The relation of apparent brightness to the threshold for differences in luminance," J. Exp. Psychol. 61, 389-399 (1961).
[CrossRef] [PubMed]

J. Math. Psychol. (2)

I. Myung, M. Forster, and M. Browne, "Guest editor's introduction: special issue on model selection," J. Math. Psychol. 44, 1-2 (2000).
[CrossRef] [PubMed]

D. Krantz, "Integration of just-noticable differences," J. Math. Psychol. 8, 591-599 (1971).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

J. Physiol. (London) (1)

K. Naka and W. Rushton, "S-potentials from colour units in the retina of fish (Cyprinidae)," J. Physiol. (London) 185, 536-555 (1966).

J. Vision (1)

J. Hillis and D. H. Brainard, "A shadowy dissociation between discriminability and identity," J. Vision 4, 56a (2004).
[CrossRef]

Nature (2)

M. Webster and J. Mollon, "Changes in colour appearance following postreceptoral adaptation," Nature 349, 235-238 (1991).
[CrossRef] [PubMed]

M. A. Webster and J. D. Mollon, "Colour constancy influenced by contrast adaptation," Nature 373, 694-698 (1995).
[CrossRef] [PubMed]

Percept. Psychophys. (1)

F. Wichmann and N. Hill, "The psychometric function: II. Bootstrap-based confidence intervals and sampling," Percept. Psychophys. 63, 1314-1329 (2001).
[CrossRef]

Physiol. Rev. (1)

R. D. Luce and W. Edwards, "The derivation of subjective scales from just noticeable differences," Physiol. Rev. 65, 222-236 (1958).

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Chubb, G. Sperling, and J. A. Solomon, "Texture interactions determine perceived contrast." Proc. Natl. Acad. Sci. U.S.A. 86, 9631-9635 (1989).
[CrossRef] [PubMed]

Proc. R. Soc. London, Ser. B (1)

D. Hubel and T. Wiesel, "Functional architecture of macaque monkey visual cortex," Proc. R. Soc. London, Ser. B 198, 1-59 (1977).
[CrossRef]

Sociol. Methodol. (1)

A. E. Rafferty, "Bayesian model selection in social research," Sociol. Methodol. 25, 111-163 (1995).
[CrossRef]

Vision Res. (19)

H. B. Barlow, D. MacLeod, and A. van Meeteeren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

M. J. Wainright, "Visual adaptation as optimal information transmission," Vision Res. 39, 3960-3974 (1999).
[CrossRef]

P. Whittle, "Brightness, discriminability and the 'crispening effect'," Vision Res. 32, 1493-1507 (1992).
[CrossRef] [PubMed]

E. H. Adelson, "Saturation and adaptation in the rod system," Vision Res. 22, 1299-1312 (1982).
[CrossRef] [PubMed]

W. S. Geisler, "Mechanisms of visual sensitivity: backgrounds and early dark adaptation," Vision Res. 23, 1423-1432 (1983).
[CrossRef] [PubMed]

A. G. Shapiro, J. L. Beere, and Q. Zaidi, "Time-course of S-cone system adaptation to simple and complex fields," Vision Res. 43, 1135-1147 (2003).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space." Vision Res. 22, 1123-1131 (1982).
[CrossRef] [PubMed]

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef]

J. Nachmias and R. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

C. C. Chen, J. M. Foley, and D. H. Brainard, "Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements," Vision Res. 40, 773-788 (2000).
[CrossRef] [PubMed]

A. G. Shapiro and Q. Zaidi, "The effects of prolonged temporal modulation on the differential response of color mechanisms," Vision Res. 32, 2065-2075 (1992).
[CrossRef] [PubMed]

M. Cannon and S. Fullenkamp, "Spatial interactions in apparent contrast--inhibitory effects among gratings," Vision Res. 31, 1985-1998 (1991).
[CrossRef] [PubMed]

B. Singer and M. D'Zmura, "Color contrast induction," Vision Res. 34, 3111-3126 (1994).
[CrossRef] [PubMed]

J. Loomis and T. Berger, "Effects of chromatic adaptation on color discrimination and color appearance," Vision Res. 19, 891-901 (1979).
[CrossRef] [PubMed]

E. N. Pugh and J. Larimer, "Test of the identity of the site of blue/yellow hue cancellation and the site of chromatic antagonism in the π1 pathway," Vision Res. 20, 779-788 (1980).
[CrossRef] [PubMed]

J. Walraven, "Perceived color under conditions of chromatic adaptation: evidence for again control by π-mechanisms," Vision Res. 21, 611-620 (1981).
[CrossRef] [PubMed]

P. Whittle, "Increments and decrements: luminance discrimination," Vision Res. 26, 1677-1691 (1986).
[CrossRef] [PubMed]

O. Rinner and K. Gegenfurtner, "Time course of chromatic adaptation for color appearance and discrimination," Vision Res. 40, 1813-1826 (2000).
[CrossRef] [PubMed]

M. A. Webster and J. D. Mollon, "The influence of contrast adaptation on color appearance," Vision Res. 34, 1993-2020 (1994).
[CrossRef] [PubMed]

Visual Neurosci. (1)

D. J. Heeger, "Normalization of cell responses in cat striate cortex," Visual Neurosci. 9, 181-197 (1992).
[CrossRef]

Z. Naturforsch. (1)

S. Laughlin, "A simple coding procedure enhances a neuron's information capacity," Z. Naturforsch. 36, 910-912 (1981).

Other (18)

H. B. Barlow and P. Foldiak, "Adaptation and decorrelation in the cortex," in The Computing Neuron, C.Miall, R.Durbin, and G.Mitchison, eds. (Addison-Wesley, 1989), pp. 54-72.

A. Abrams, J. Hillis, and D. H. Brainard, "The relation between color discrimination and color constancy: when is optimal adaptation task dependent?" Neural Comput. (to be published).

L. T. Maloney, "Physics-based approaches to modeling surface color perception," in Color Vision: From Genes to Perception, K.T.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 387-416.

D. H. Brainard, "Color constancy," in The Visual Neurosciences, L.Chalupa and J.Werner, eds. (MIT, 2004), Vol. 1, pp. 948-961.

H. Barlow, "Possible principles underlying the transformations of sensory messages," in Sensory Communication, W.Rosenblith, ed. (MIT, 1961), pp. 217-234.

M. D'Zmura and B. Singer, "Contast gain control," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999).

G. H. Jacobs, Comparative Color Vision (Academic, 1981).

G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

P. K. Kaiser and R. M. Boynton, Human Color Vision, 2nd ed. (Optical Society of America, 1996).

R. T. Eskew, J. S. McLellan, and F. Giulianini, "Chromatic detection and discrimination," in Color Vision: From Molecular Genetics to Perception, K.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 345-368.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer Series in Statistics (Springer,2001).

K. P. Burnham and D. R. Anderson, Model Selection and Multi-Model Inference (Springer, 2002).

P. Bickel and K. Doksum, Mathematical Statistics (Holden-Day, 1977).

R. W. Rodieck, The First Steps In Seeing (Sinauer, 1998).

L. Ungerleider and M. Mishkin, "Two cortical visual systems," in Analysis of Visual Behavior, D.J.Ingle, M.A.Goodale, and R.J. W.Mansfield, eds. (MIT, 1982), pp. 549-586.

G. Fechner, Elements of Psychophysics, Henry Holt Edition in Psychology (Holt, Rinehart & Winston, 1966).

In our hands, the common mechanism hypothesis includes the possibility that appearance and sensitivity are mediated by physiologically distinct processing streams that encode and adapt identically. In general, distinguishing two separate physiological mechanisms that behave identically is not possible with psychophysical data alone, and an experimental approach to this possibility would require both physiological data and a sharp theory linking that data to performance on the two types of psychophysical tasks.

D. H. Brainard, D. G. Pelli, and T. Robson, "Display characterization," in Encylopedia of Imaging Science and Technology, J.P.Hornak ed. (Wiley, 2002), pp. 72-188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Linking discrimination and appearance data. The x axis represents stimulus strength (e.g., intensity or contrast), and the y axis represents response magnitude. The two curves are response functions for the same mechanism in two states of adaptation. Because they yield the same responses in the two contexts, stimuli indicated by the downward arrows are predicted to appear the same across the change of context that induced the adaptation. Within a single context, the stimulus difference Δ I yields a larger response difference when added to P 1 as compared with P 2 (compare Δ R 1 with Δ R 2 on the y axis). If additive noise with fixed variance is limiting performance, we expect better discrimination performance at P 1 as compared with P 2 .

Fig. 2
Fig. 2

JMH’s discrimination threshold and appearance data for S-cone tests presented in the uniform gray (top row), LM-cone noise (middle row), and S-cone noise (bottom row). Decrement thresholds are plotted in the left column; increment thresholds are in the middle column. Thresholds for the gray condition are replotted (filled diamonds) in the middle and bottom rows for reference. Error bars are 68% confidence intervals. Asymmetric matching data are in the two rightmost panels. The x axis represents the S-cone intensity of the tests that were presented in the adapting noise fields. The y axis represents the intensity of the match set by the observer against the gray half of the display. Error bars are one standard error of the mean. The smooth curves in the plots represent the fit of the CM variant of the { g , q , M } model of adaptation.

Fig. 3
Fig. 3

QRS’s threshold and appearance data for S-cone tests. The format is the same as JMH’s data shown in Fig. 2.

Fig. 4
Fig. 4

JMH’s threshold and appearance data for LM-cone tests presented on the uniform gray (top row) and LM-cone noise (bottom row). The format is the same as in Figs. 2, 3 except the axes now correspond to L- and M-cone test isomerization totals.

Fig. 5
Fig. 5

QRS’s threshold and appearance data for LM-cone tests presented on the uniform Gray (top row) and LM-cone noise (bottom row).

Fig. 6
Fig. 6

Threshold difference between gray and noise contexts for S-cone tests in S-cone noise (top panels) and for LM-cone tests in LM-cone noise. The left and right columns of the panels are for decrements and increments, respectively. Diamonds are for JMH, and circles are for QRS. Error bars are 95% confidence intervals.

Fig. 7
Fig. 7

(Top panel) Δ AIC and (bottom panel) Δ BIC scores for the three model variants. For the two bar plots on the left, the blocks of bars represent, from left to right, results for the CM, IA, and IC variants. Black, gray, and white bars represent one-, two-, and three-parameter adaptation models, respectively. Table 2 lists the adaptation models included in each of the blocks of bars. The two right panels show the Δ AIC and Δ BIC scores as a function of their rank. The top-right panel shows the Δ AIC value as a function of AIC rank. The bottom-right panel shows the Δ BIC value as a function of BIC rank. For each criterion ( AIC and BIC ), the parametric models were ranked according to the score assigned to the most preferred variant of each model, so that the CM, IA, and IC variant scores shown for any rank correspond to the same parametric model. The CM, IA, and IC results are represented, respectively, by black symbols with gray outlines, light gray symbols, and light gray symbols with dark gray outlines. Within this symbol color scheme, one-, two-, and three-parameter adaptation models are represented by circles, diamonds, and squares, respectively.

Fig. 8
Fig. 8

S-, L-, and M-cone test response functions for the { g , M } and { g , q , M } models of the CM variant. The four plots grouped on the left show response functions; the { g , M } model and the four plots grouped on the right show response functions for the { g , q , M } model. Within each group of four panels, JMH’s response functions are in the left column and QRS’s are in the right column. Response functions for the S-cone tests are in the bottom row and those for the LM-cone tests are in the top row. Test intensity is on the x axes, and response magnitude is on the y axes. The solid black, dashed black, and solid gray curves are response functions inferred from the uniform gray, LM-cone noise, and S-cone noise contexts, respectively.

Tables (2)

Tables Icon

Table 1 Cone Coordinates for Gray and Noise Backgrounds a

Tables Icon

Table 2 List of Adaptation Models Corresponding to the AIC and BIC Scores Shown in Fig. 7 a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p ( τ ) = { 1 13 for τ = [ 156 : 13 : 312 ] 0 otherwise } ,
R = M ( g I + s ) p ( g I + s ) q + 1 ,
AIC = 2 ln ( L ) + 2 k ,
BIC = 2 ln ( L ) + ln ( n ) k ,

Metrics