Abstract

Some scenarios require performance estimation of an imaging or a computer vision system prior to its actual operation such as in system design, as well as in tasks of high risk or cost. To predict the performance, we propose an image-based approach that accounts for underlying image-formation processes while using real image data. We give a detailed description of image formation from scene photons to image gray levels. This analysis includes all the optical, electrical, and digital sources of signal distortion and noise. On the basis of this analysis and our access to the camera parameters, we devise a simple image-based algorithm. It transforms a baseline high-quality image to render an estimated outcome of the system we wish to operate or design. We demonstrate our approach on thermal imaging systems (infrared spectrum, 35μm).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Bronskill, J. S. A. Hepburn, and W. K. Au, "A knowledge-based approach to the detection, tracking and classification of target formations in infrared image sequences," in Proceedings of the IEEE Computer Society Conference Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 153-158.
    [CrossRef]
  2. L. E. Hoff, J. R. Evans, and L. E. Bunny, "Detection of targets in terrain clutter by using multi-spectral infrared image processing," Proc. SPIE 1481, 98-109 (1991).
    [CrossRef]
  3. D. Sheffer and D. Ingman, "The informational difference concept in analayzing target recognition issues," J. Opt. Soc. Am. A 14, 1431-1438 (1997).
    [CrossRef]
  4. R. G. Driggers, R. Vollmerhausen, and T. Edwards, "The target identification performance of infrared imager models as a function of blur and sampling," Proc. SPIE 3701, 26-34 (1999).
    [CrossRef]
  5. J. Johnson, "Analysis of image forming systems," in Proceedings of the Image Intensifier Symposium (Warfare Electrical Engineering Department, U.S. Army Research and Development Laboratories, 1958), pp. 249-273.
  6. L. Scott and J. D'Agostino, "NVEOD FLIR92 thermal imaging systems performance model," Proc. SPIE 1689, 194-203 (1992).
    [CrossRef]
  7. W. Wittenstein, "Thermal range model TRM3," Proc. SPIE 3436, 413-424 (1998).
    [CrossRef]
  8. O. E. Toler and D. S. Grey, "Simulation model for infrared imaging systems," Proc. SPIE 226, 121-128 (1980).
  9. M. Wegener and R. Drake, "High-fidelty synthetic IR imaging model," Proc. SPIE 4027, 323-328 (2000).
    [CrossRef]
  10. C. Wigren, "Model of image generation in optronic sensor systems (IGOSS)," Proc. SPIE 3377, 89-96 (1998).
    [CrossRef]
  11. W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, "Learning low-level vision," in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society, 1999), Vol. 2, pp. 1182-1189.
    [CrossRef]
  12. D. J. Heeger and J. R. Bergen, "Pyramid-based texture analysis/synthesis." Proceedings of SIGGRAPH 1995 (www.siggraph.org, 1995), pp. 229-238.
    [CrossRef]
  13. L. Y. Wei and M. Levoy, "Fast texture synthesis using tree-structured vector quantization," in Proceedings of SIGGRAPH 2000 (www.siggraph.org, 2000), pp. 479-488.
    [CrossRef]
  14. P. Bao and M. Xiaohu, "Texturing and line art rendering using patch-based image analogies," in Proceedings of the IEEE Workshop on Multimedia Signal Processing (IEEE, 2002), pp. 142-148.
  15. I. Drori, D. Cohen-Or, and H. Yeshurun, "Example-based style synthesis," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2003), Vol. 2, pp. 143-150.
  16. A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of SIGGRAPH 2001 (www.siggraph.org, 2001), pp. 327-340.
    [CrossRef]
  17. C. Oh, N. Nandhakurnar, and J. K. Aggarwal, "Integrated modelling of thermal and visual image generation," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 356-362.
    [CrossRef]
  18. I. Pavlidis, J. Levine, and P. Baukol, "Thermal imaging for anxiety detection," in Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum (IEEE Computer Society, 2000), pp. 104-109.
  19. D. A. Socolinsky, L. B. Wolff, J. D. Neuheisel, and C. K. Eveland, "Illumination invariant face recognition using thermal infrared imagery," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2001), Vol. 1, pp. I-527-534.
  20. G. C. Holst, Electro-Optical Imaging Systems Performance, 3rd ed. (SPIE, 2003).
  21. R. D. Hudson, Infrared System Engineering (Wiley, 1969), Chaps. 1-2, 5-9, 16-19.
  22. J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975), Chaps. 1-3, 5-11.
  23. J. M. Mooney, "Design consideration for IR staring-mode cameras," Proc. SPIE 683, 35-50 (1986).
  24. C. A. Klein, "Hot infrared domes: a case study," Proc. SPIE 1326, 217-230 (1990).
    [CrossRef]
  25. O. Naveh, "Sensitivity of scanning and staring infrared seekers for air-to-air missiles," Proc. SPIE 3061, 692-711 (1997).
    [CrossRef]
  26. M. D. Nelson, J. F. Johnson, and T. S. Lomheim, "General noise process in hybrid infrared focal plane arrays," Opt. Eng. 30, 1682-1700 (1991).
    [CrossRef]
  27. J. T. Barnett, "Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds," Proc. SPIE 1050, 10-18 (1989).
  28. S. Nong and Z. Tianxu, "Segmentation of FLIR images by target enhancement and image model," Proc. SPIE 3545, 274-277 (1998).
    [CrossRef]

2003 (2)

I. Drori, D. Cohen-Or, and H. Yeshurun, "Example-based style synthesis," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2003), Vol. 2, pp. 143-150.

G. C. Holst, Electro-Optical Imaging Systems Performance, 3rd ed. (SPIE, 2003).

2002 (1)

P. Bao and M. Xiaohu, "Texturing and line art rendering using patch-based image analogies," in Proceedings of the IEEE Workshop on Multimedia Signal Processing (IEEE, 2002), pp. 142-148.

2001 (2)

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of SIGGRAPH 2001 (www.siggraph.org, 2001), pp. 327-340.
[CrossRef]

D. A. Socolinsky, L. B. Wolff, J. D. Neuheisel, and C. K. Eveland, "Illumination invariant face recognition using thermal infrared imagery," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2001), Vol. 1, pp. I-527-534.

2000 (3)

I. Pavlidis, J. Levine, and P. Baukol, "Thermal imaging for anxiety detection," in Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum (IEEE Computer Society, 2000), pp. 104-109.

L. Y. Wei and M. Levoy, "Fast texture synthesis using tree-structured vector quantization," in Proceedings of SIGGRAPH 2000 (www.siggraph.org, 2000), pp. 479-488.
[CrossRef]

M. Wegener and R. Drake, "High-fidelty synthetic IR imaging model," Proc. SPIE 4027, 323-328 (2000).
[CrossRef]

1999 (2)

W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, "Learning low-level vision," in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society, 1999), Vol. 2, pp. 1182-1189.
[CrossRef]

R. G. Driggers, R. Vollmerhausen, and T. Edwards, "The target identification performance of infrared imager models as a function of blur and sampling," Proc. SPIE 3701, 26-34 (1999).
[CrossRef]

1998 (3)

W. Wittenstein, "Thermal range model TRM3," Proc. SPIE 3436, 413-424 (1998).
[CrossRef]

C. Wigren, "Model of image generation in optronic sensor systems (IGOSS)," Proc. SPIE 3377, 89-96 (1998).
[CrossRef]

S. Nong and Z. Tianxu, "Segmentation of FLIR images by target enhancement and image model," Proc. SPIE 3545, 274-277 (1998).
[CrossRef]

1997 (2)

O. Naveh, "Sensitivity of scanning and staring infrared seekers for air-to-air missiles," Proc. SPIE 3061, 692-711 (1997).
[CrossRef]

D. Sheffer and D. Ingman, "The informational difference concept in analayzing target recognition issues," J. Opt. Soc. Am. A 14, 1431-1438 (1997).
[CrossRef]

1995 (1)

D. J. Heeger and J. R. Bergen, "Pyramid-based texture analysis/synthesis." Proceedings of SIGGRAPH 1995 (www.siggraph.org, 1995), pp. 229-238.
[CrossRef]

1992 (1)

L. Scott and J. D'Agostino, "NVEOD FLIR92 thermal imaging systems performance model," Proc. SPIE 1689, 194-203 (1992).
[CrossRef]

1991 (2)

L. E. Hoff, J. R. Evans, and L. E. Bunny, "Detection of targets in terrain clutter by using multi-spectral infrared image processing," Proc. SPIE 1481, 98-109 (1991).
[CrossRef]

M. D. Nelson, J. F. Johnson, and T. S. Lomheim, "General noise process in hybrid infrared focal plane arrays," Opt. Eng. 30, 1682-1700 (1991).
[CrossRef]

1990 (1)

C. A. Klein, "Hot infrared domes: a case study," Proc. SPIE 1326, 217-230 (1990).
[CrossRef]

1989 (3)

J. T. Barnett, "Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds," Proc. SPIE 1050, 10-18 (1989).

J. F. Bronskill, J. S. A. Hepburn, and W. K. Au, "A knowledge-based approach to the detection, tracking and classification of target formations in infrared image sequences," in Proceedings of the IEEE Computer Society Conference Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 153-158.
[CrossRef]

C. Oh, N. Nandhakurnar, and J. K. Aggarwal, "Integrated modelling of thermal and visual image generation," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 356-362.
[CrossRef]

1986 (1)

J. M. Mooney, "Design consideration for IR staring-mode cameras," Proc. SPIE 683, 35-50 (1986).

1980 (1)

O. E. Toler and D. S. Grey, "Simulation model for infrared imaging systems," Proc. SPIE 226, 121-128 (1980).

1975 (1)

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975), Chaps. 1-3, 5-11.

1969 (1)

R. D. Hudson, Infrared System Engineering (Wiley, 1969), Chaps. 1-2, 5-9, 16-19.

1958 (1)

J. Johnson, "Analysis of image forming systems," in Proceedings of the Image Intensifier Symposium (Warfare Electrical Engineering Department, U.S. Army Research and Development Laboratories, 1958), pp. 249-273.

Aggarwal, J. K.

C. Oh, N. Nandhakurnar, and J. K. Aggarwal, "Integrated modelling of thermal and visual image generation," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 356-362.
[CrossRef]

Au, W. K.

J. F. Bronskill, J. S. A. Hepburn, and W. K. Au, "A knowledge-based approach to the detection, tracking and classification of target formations in infrared image sequences," in Proceedings of the IEEE Computer Society Conference Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 153-158.
[CrossRef]

Bao, P.

P. Bao and M. Xiaohu, "Texturing and line art rendering using patch-based image analogies," in Proceedings of the IEEE Workshop on Multimedia Signal Processing (IEEE, 2002), pp. 142-148.

Barnett, J. T.

J. T. Barnett, "Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds," Proc. SPIE 1050, 10-18 (1989).

Baukol, P.

I. Pavlidis, J. Levine, and P. Baukol, "Thermal imaging for anxiety detection," in Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum (IEEE Computer Society, 2000), pp. 104-109.

Bergen, J. R.

D. J. Heeger and J. R. Bergen, "Pyramid-based texture analysis/synthesis." Proceedings of SIGGRAPH 1995 (www.siggraph.org, 1995), pp. 229-238.
[CrossRef]

Bronskill, J. F.

J. F. Bronskill, J. S. A. Hepburn, and W. K. Au, "A knowledge-based approach to the detection, tracking and classification of target formations in infrared image sequences," in Proceedings of the IEEE Computer Society Conference Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 153-158.
[CrossRef]

Bunny, L. E.

L. E. Hoff, J. R. Evans, and L. E. Bunny, "Detection of targets in terrain clutter by using multi-spectral infrared image processing," Proc. SPIE 1481, 98-109 (1991).
[CrossRef]

Carmichael, O. T.

W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, "Learning low-level vision," in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society, 1999), Vol. 2, pp. 1182-1189.
[CrossRef]

Cohen-Or, D.

I. Drori, D. Cohen-Or, and H. Yeshurun, "Example-based style synthesis," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2003), Vol. 2, pp. 143-150.

Curless, B.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of SIGGRAPH 2001 (www.siggraph.org, 2001), pp. 327-340.
[CrossRef]

D'Agostino, J.

L. Scott and J. D'Agostino, "NVEOD FLIR92 thermal imaging systems performance model," Proc. SPIE 1689, 194-203 (1992).
[CrossRef]

Drake, R.

M. Wegener and R. Drake, "High-fidelty synthetic IR imaging model," Proc. SPIE 4027, 323-328 (2000).
[CrossRef]

Driggers, R. G.

R. G. Driggers, R. Vollmerhausen, and T. Edwards, "The target identification performance of infrared imager models as a function of blur and sampling," Proc. SPIE 3701, 26-34 (1999).
[CrossRef]

Drori, I.

I. Drori, D. Cohen-Or, and H. Yeshurun, "Example-based style synthesis," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2003), Vol. 2, pp. 143-150.

Edwards, T.

R. G. Driggers, R. Vollmerhausen, and T. Edwards, "The target identification performance of infrared imager models as a function of blur and sampling," Proc. SPIE 3701, 26-34 (1999).
[CrossRef]

Evans, J. R.

L. E. Hoff, J. R. Evans, and L. E. Bunny, "Detection of targets in terrain clutter by using multi-spectral infrared image processing," Proc. SPIE 1481, 98-109 (1991).
[CrossRef]

Eveland, C. K.

D. A. Socolinsky, L. B. Wolff, J. D. Neuheisel, and C. K. Eveland, "Illumination invariant face recognition using thermal infrared imagery," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2001), Vol. 1, pp. I-527-534.

Freeman, W. T.

W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, "Learning low-level vision," in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society, 1999), Vol. 2, pp. 1182-1189.
[CrossRef]

Grey, D. S.

O. E. Toler and D. S. Grey, "Simulation model for infrared imaging systems," Proc. SPIE 226, 121-128 (1980).

Heeger, D. J.

D. J. Heeger and J. R. Bergen, "Pyramid-based texture analysis/synthesis." Proceedings of SIGGRAPH 1995 (www.siggraph.org, 1995), pp. 229-238.
[CrossRef]

Hepburn, J. S. A.

J. F. Bronskill, J. S. A. Hepburn, and W. K. Au, "A knowledge-based approach to the detection, tracking and classification of target formations in infrared image sequences," in Proceedings of the IEEE Computer Society Conference Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 153-158.
[CrossRef]

Hertzmann, A.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of SIGGRAPH 2001 (www.siggraph.org, 2001), pp. 327-340.
[CrossRef]

Hoff, L. E.

L. E. Hoff, J. R. Evans, and L. E. Bunny, "Detection of targets in terrain clutter by using multi-spectral infrared image processing," Proc. SPIE 1481, 98-109 (1991).
[CrossRef]

Holst, G. C.

G. C. Holst, Electro-Optical Imaging Systems Performance, 3rd ed. (SPIE, 2003).

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, 1969), Chaps. 1-2, 5-9, 16-19.

Ingman, D.

Jacobs, C. E.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of SIGGRAPH 2001 (www.siggraph.org, 2001), pp. 327-340.
[CrossRef]

Johnson, J.

J. Johnson, "Analysis of image forming systems," in Proceedings of the Image Intensifier Symposium (Warfare Electrical Engineering Department, U.S. Army Research and Development Laboratories, 1958), pp. 249-273.

Johnson, J. F.

M. D. Nelson, J. F. Johnson, and T. S. Lomheim, "General noise process in hybrid infrared focal plane arrays," Opt. Eng. 30, 1682-1700 (1991).
[CrossRef]

Klein, C. A.

C. A. Klein, "Hot infrared domes: a case study," Proc. SPIE 1326, 217-230 (1990).
[CrossRef]

Levine, J.

I. Pavlidis, J. Levine, and P. Baukol, "Thermal imaging for anxiety detection," in Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum (IEEE Computer Society, 2000), pp. 104-109.

Levoy, M.

L. Y. Wei and M. Levoy, "Fast texture synthesis using tree-structured vector quantization," in Proceedings of SIGGRAPH 2000 (www.siggraph.org, 2000), pp. 479-488.
[CrossRef]

Lloyd, J. M.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975), Chaps. 1-3, 5-11.

Lomheim, T. S.

M. D. Nelson, J. F. Johnson, and T. S. Lomheim, "General noise process in hybrid infrared focal plane arrays," Opt. Eng. 30, 1682-1700 (1991).
[CrossRef]

Mooney, J. M.

J. M. Mooney, "Design consideration for IR staring-mode cameras," Proc. SPIE 683, 35-50 (1986).

Nandhakurnar, N.

C. Oh, N. Nandhakurnar, and J. K. Aggarwal, "Integrated modelling of thermal and visual image generation," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 356-362.
[CrossRef]

Naveh, O.

O. Naveh, "Sensitivity of scanning and staring infrared seekers for air-to-air missiles," Proc. SPIE 3061, 692-711 (1997).
[CrossRef]

Nelson, M. D.

M. D. Nelson, J. F. Johnson, and T. S. Lomheim, "General noise process in hybrid infrared focal plane arrays," Opt. Eng. 30, 1682-1700 (1991).
[CrossRef]

Neuheisel, J. D.

D. A. Socolinsky, L. B. Wolff, J. D. Neuheisel, and C. K. Eveland, "Illumination invariant face recognition using thermal infrared imagery," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2001), Vol. 1, pp. I-527-534.

Nong, S.

S. Nong and Z. Tianxu, "Segmentation of FLIR images by target enhancement and image model," Proc. SPIE 3545, 274-277 (1998).
[CrossRef]

Oh, C.

C. Oh, N. Nandhakurnar, and J. K. Aggarwal, "Integrated modelling of thermal and visual image generation," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 356-362.
[CrossRef]

Oliver, N.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of SIGGRAPH 2001 (www.siggraph.org, 2001), pp. 327-340.
[CrossRef]

Pasztor, E. C.

W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, "Learning low-level vision," in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society, 1999), Vol. 2, pp. 1182-1189.
[CrossRef]

Pavlidis, I.

I. Pavlidis, J. Levine, and P. Baukol, "Thermal imaging for anxiety detection," in Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum (IEEE Computer Society, 2000), pp. 104-109.

Salesin, D. H.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of SIGGRAPH 2001 (www.siggraph.org, 2001), pp. 327-340.
[CrossRef]

Scott, L.

L. Scott and J. D'Agostino, "NVEOD FLIR92 thermal imaging systems performance model," Proc. SPIE 1689, 194-203 (1992).
[CrossRef]

Sheffer, D.

Socolinsky, D. A.

D. A. Socolinsky, L. B. Wolff, J. D. Neuheisel, and C. K. Eveland, "Illumination invariant face recognition using thermal infrared imagery," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2001), Vol. 1, pp. I-527-534.

Tianxu, Z.

S. Nong and Z. Tianxu, "Segmentation of FLIR images by target enhancement and image model," Proc. SPIE 3545, 274-277 (1998).
[CrossRef]

Toler, O. E.

O. E. Toler and D. S. Grey, "Simulation model for infrared imaging systems," Proc. SPIE 226, 121-128 (1980).

Vollmerhausen, R.

R. G. Driggers, R. Vollmerhausen, and T. Edwards, "The target identification performance of infrared imager models as a function of blur and sampling," Proc. SPIE 3701, 26-34 (1999).
[CrossRef]

Wegener, M.

M. Wegener and R. Drake, "High-fidelty synthetic IR imaging model," Proc. SPIE 4027, 323-328 (2000).
[CrossRef]

Wei, L. Y.

L. Y. Wei and M. Levoy, "Fast texture synthesis using tree-structured vector quantization," in Proceedings of SIGGRAPH 2000 (www.siggraph.org, 2000), pp. 479-488.
[CrossRef]

Wigren, C.

C. Wigren, "Model of image generation in optronic sensor systems (IGOSS)," Proc. SPIE 3377, 89-96 (1998).
[CrossRef]

Wittenstein, W.

W. Wittenstein, "Thermal range model TRM3," Proc. SPIE 3436, 413-424 (1998).
[CrossRef]

Wolff, L. B.

D. A. Socolinsky, L. B. Wolff, J. D. Neuheisel, and C. K. Eveland, "Illumination invariant face recognition using thermal infrared imagery," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2001), Vol. 1, pp. I-527-534.

Xiaohu, M.

P. Bao and M. Xiaohu, "Texturing and line art rendering using patch-based image analogies," in Proceedings of the IEEE Workshop on Multimedia Signal Processing (IEEE, 2002), pp. 142-148.

Yeshurun, H.

I. Drori, D. Cohen-Or, and H. Yeshurun, "Example-based style synthesis," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2003), Vol. 2, pp. 143-150.

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

M. D. Nelson, J. F. Johnson, and T. S. Lomheim, "General noise process in hybrid infrared focal plane arrays," Opt. Eng. 30, 1682-1700 (1991).
[CrossRef]

Proc. SPIE (12)

J. T. Barnett, "Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds," Proc. SPIE 1050, 10-18 (1989).

S. Nong and Z. Tianxu, "Segmentation of FLIR images by target enhancement and image model," Proc. SPIE 3545, 274-277 (1998).
[CrossRef]

J. M. Mooney, "Design consideration for IR staring-mode cameras," Proc. SPIE 683, 35-50 (1986).

C. A. Klein, "Hot infrared domes: a case study," Proc. SPIE 1326, 217-230 (1990).
[CrossRef]

O. Naveh, "Sensitivity of scanning and staring infrared seekers for air-to-air missiles," Proc. SPIE 3061, 692-711 (1997).
[CrossRef]

R. G. Driggers, R. Vollmerhausen, and T. Edwards, "The target identification performance of infrared imager models as a function of blur and sampling," Proc. SPIE 3701, 26-34 (1999).
[CrossRef]

L. E. Hoff, J. R. Evans, and L. E. Bunny, "Detection of targets in terrain clutter by using multi-spectral infrared image processing," Proc. SPIE 1481, 98-109 (1991).
[CrossRef]

L. Scott and J. D'Agostino, "NVEOD FLIR92 thermal imaging systems performance model," Proc. SPIE 1689, 194-203 (1992).
[CrossRef]

W. Wittenstein, "Thermal range model TRM3," Proc. SPIE 3436, 413-424 (1998).
[CrossRef]

O. E. Toler and D. S. Grey, "Simulation model for infrared imaging systems," Proc. SPIE 226, 121-128 (1980).

M. Wegener and R. Drake, "High-fidelty synthetic IR imaging model," Proc. SPIE 4027, 323-328 (2000).
[CrossRef]

C. Wigren, "Model of image generation in optronic sensor systems (IGOSS)," Proc. SPIE 3377, 89-96 (1998).
[CrossRef]

Other (14)

W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, "Learning low-level vision," in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer Society, 1999), Vol. 2, pp. 1182-1189.
[CrossRef]

D. J. Heeger and J. R. Bergen, "Pyramid-based texture analysis/synthesis." Proceedings of SIGGRAPH 1995 (www.siggraph.org, 1995), pp. 229-238.
[CrossRef]

L. Y. Wei and M. Levoy, "Fast texture synthesis using tree-structured vector quantization," in Proceedings of SIGGRAPH 2000 (www.siggraph.org, 2000), pp. 479-488.
[CrossRef]

P. Bao and M. Xiaohu, "Texturing and line art rendering using patch-based image analogies," in Proceedings of the IEEE Workshop on Multimedia Signal Processing (IEEE, 2002), pp. 142-148.

I. Drori, D. Cohen-Or, and H. Yeshurun, "Example-based style synthesis," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2003), Vol. 2, pp. 143-150.

A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin, "Image analogies," in Proceedings of SIGGRAPH 2001 (www.siggraph.org, 2001), pp. 327-340.
[CrossRef]

C. Oh, N. Nandhakurnar, and J. K. Aggarwal, "Integrated modelling of thermal and visual image generation," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 356-362.
[CrossRef]

I. Pavlidis, J. Levine, and P. Baukol, "Thermal imaging for anxiety detection," in Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum (IEEE Computer Society, 2000), pp. 104-109.

D. A. Socolinsky, L. B. Wolff, J. D. Neuheisel, and C. K. Eveland, "Illumination invariant face recognition using thermal infrared imagery," in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2001), Vol. 1, pp. I-527-534.

G. C. Holst, Electro-Optical Imaging Systems Performance, 3rd ed. (SPIE, 2003).

R. D. Hudson, Infrared System Engineering (Wiley, 1969), Chaps. 1-2, 5-9, 16-19.

J. M. Lloyd, Thermal Imaging Systems (Plenum, 1975), Chaps. 1-3, 5-11.

J. F. Bronskill, J. S. A. Hepburn, and W. K. Au, "A knowledge-based approach to the detection, tracking and classification of target formations in infrared image sequences," in Proceedings of the IEEE Computer Society Conference Computer Vision and Pattern Recognition (IEEE Computer Society, 1989), pp. 153-158.
[CrossRef]

J. Johnson, "Analysis of image forming systems," in Proceedings of the Image Intensifier Symposium (Warfare Electrical Engineering Department, U.S. Army Research and Development Laboratories, 1958), pp. 249-273.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Functional flow diagram of an imaging system.

Fig. 2
Fig. 2

Functional flow diagram of an optical assembly.

Fig. 3
Fig. 3

Different contributions to the photon irradiance on the detector. Tracks of different contributions are in different line styles.

Fig. 4
Fig. 4

Flow diagram of a detector module.

Fig. 5
Fig. 5

Image-processing flow diagram (a) in the HQ system, (b) in the LQ system.

Fig. 6
Fig. 6

Stability of a deblurring operation. Top, schematic plots of the blur frequency responses of an LQ system and an HQ system. Bottom, a schematic plot of an inversion of an HQ blur operation, proceeded by an LQ blur operation. On its own, inversion of H HQ is unstable at high frequencies. However, subsequent application of H LQ results in a stable operation.

Fig. 7
Fig. 7

Optical and cross-talk PSFs. The figure presents 1D profiles of h opt HQ , h opt LQ and h xtk HQ , as well as the horizontal pitch of both systems ( 30 μ m ) . The optical blur of the LQ system is stronger than that of the HQ system.

Fig. 8
Fig. 8

Presampling MTFs of the HQ system. The sampling frequency f samp is marked on the plot.

Fig. 9
Fig. 9

Spectrum associated with the entire HQ imaging system, before sampling. As a result of sampling it is replicated. There is very little energy in the overlap between the replicates: a very small portion of the spectrum is aliased.

Fig. 10
Fig. 10

Experimental results. Each column includes a set from a distinct experiment. There is a significant difference between I out HQ and I out LQ . Nevertheless, I ̂ out LQ appears very similar to I out LQ . Targets are labeled for a lock-on grade comparison. Pay attention to the trees in the ellipse. In I out HQ they all have the same gray level, but in I out LQ they have different gray levels in different zones, an effect caused by the median subtraction. In I ̂ out LQ we see the same effect.

Fig. 11
Fig. 11

Additional experimental results. Each column includes a set from a distinct experiment. In all sets, there is a significant appearance difference between I out HQ and I out LQ . Nevertheless, I ̂ out LQ appears very similar to I out LQ . Targets are labeled for a lock-on grade comparison.

Fig. 12
Fig. 12

Cold shield efficiency. The lighter cone shows the solid angle set by the optics Ω opt , while the darker cone shows the solid angle set by the cold shield aperture Ω CSh . When Ω CSh > Ω opt , some unwanted internal radiation reaches the detector.

Tables (1)

Tables Icon

Table 1 Lock-on Grade in Different Targets in I out HQ , I out LQ , and I ̂ out LQ a

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

E λ proj ( x , y ) = Ω opt L λ scn ( x a , y a ) τ opt ( λ ) [ photon cm 2 μ m s ] ,
E λ blur = h opt * E λ proj ,
h scan ( x ) = rect ( x v scan t int ) .
E λ det ( x , y ) = E λ blur ( x , y ) + E λ body + E λ rfl + E λ opt ,
L λ ( T b ) = c 3 π λ 4 ( e c 2 λ T b 1 ) [ photon cm 2 μ m sr s ] ,
N ̇ e gen ( x , y ) = λ E λ det ( x , y ) η Q ( λ ) d λ + i dark q A d
N ̇ e ( x , y ) = h xtk N ̇ e gen [ e cm 2 s ] .
N e samp ( m , n ) = t int A d N ̇ e ( x , y ) d x d y [ e ] ,
N e samp ( m , n ) = A d t int [ h det N ̇ e ] ( x n , y m ) [ e ] ,
h det ( x , y ) = rect ( x α , y β ) .
x n = ( n 1 2 ) Δ x d , y m = ( m 1 2 ) Δ y d .
V read ( m , n ) = q N e samp ( m , n ) C [ V ] ,
V ( m , n ) = V read ( m , n ) + V noise ( m , n ) [ V ] .
ν shot = q C N e samp [ V ] .
ν noise = ν shot 2 + ν RNU 2 + ν excess 2 [ V ] .
I b ( m , n ) = ( 2 b 1 ) V ( m , n ) V min V max V min .
I out ( m , n ) = g I b ( m , n ) + o .
V m = [ V ( m , 1 ) , V ( m , 2 ) , V ( m , n max ) ] ,
d m = median ( V m ) .
V med = [ V 1 V M ] [ d 1 d M ] ,
h ̂ ( m , n ) = h ( m Δ y d , n Δ x d ) ,
κ = C HQ C LQ A d LQ A d HQ t int LQ t int HQ η ¯ Q LQ η ¯ Q HQ Ω opt LQ Ω opt HQ τ opt LQ τ opt HQ .
ν ̂ noise LQ = ( ν noise LQ ) 2 ( κ ν noise HQ ) 2
ν noise LQ > κ ν noise HQ .
N ̂ e HQ , samp ( m , n ) = C HQ V ̂ HQ ( m , n ) q [ e ] .
N ̇ ̂ e HQ = 1 t int HQ F 1 [ F N ̂ e HQ , samp F h ̂ det HQ ] ,
N ̇ ̂ e HQ , gen = F 1 [ F N ̇ ̂ e HQ F h ̂ xtk HQ ] .
E ̂ det HQ ( m , n ) = N ̇ ̂ e HQ , gen ( m , n ) i dark HQ q η ¯ Q HQ [ photon s ] .
E ̂ ( m , n ) = A d HQ λ η Q HQ ( λ ) E λ ( x , y ) d λ [ photon s ] .
E ̂ blur HQ ( m , n ) = E ̂ det HQ ( m , n ) E ̂ opt HQ E ̂ rfl HQ E ̂ body HQ .
E ̂ proj HQ = F 1 F E ̂ blur HQ F h ̂ opt HQ .
L ̂ scn ( m , n ) = E ̂ proj HQ ( m , n ) Ω opt HQ τ opt τ F [ photon sr s ] .
G lock = STD ( I win ) ν noise ,
E λ rfl = L λ ( T b ) ϵ b ( λ ) τ F ( λ ) Ω opt ρ opt ( λ , θ , ϕ ) d θ d ϕ .

Metrics