Abstract

Speckle noise is a ubiquitous artifact that limits the interpretation of optical coherence tomography images. Here we apply various speckle-reduction digital filters to optical coherence tomography images and compare their performance. Our results indicate that shift-invariant, nonorthogonal wavelet-transform-based filters together with enhanced Lee and adaptive Wiener filters can significantly reduce speckle and increase the signal-to-noise ratio, while preserving strong edges. The speckle reduction capabilities of these filters are also compared with speckle reduction from incoherent angular compounding. Our results suggest that by using these digital filters, the number of individual angles required to attain a certain level of speckle reduction can be decreased.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
    [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  4. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  5. J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997).
    [CrossRef] [PubMed]
  6. K. M. Yung, S. L. Lee, and J. M. Schmitt, "Phase-domain processing of optical coherence tomography images," J. Biomed. Opt. 4, 125-136 (1999).
    [CrossRef]
  7. T. Asakura, International Trends in Optics and Photonics ICO IV (Springer-Verlag, 1999), pp. 359-389.
  8. M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000).
    [CrossRef]
  9. J. Rogowska and M. E. Brezinski, "Evaluation of adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
    [CrossRef]
  10. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
    [CrossRef] [PubMed]
  11. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
    [CrossRef] [PubMed]
  12. D. C. Adler, T. H. Ko, and J. G. Fujimoto, "Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter," Opt. Lett. 29, 2878-2880 (2004).
    [CrossRef]
  13. D. L. Marks, T. S. Ralston, and S. A. Boppart, "Speckle reduction by I-divergence regularization in optical coherence tomography," J. Opt. Soc. Am. A 22, 2366-2371 (2005).
    [CrossRef]
  14. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging," Opt. Express 14, 4736-4745 (2006).
    [CrossRef] [PubMed]
  15. J. S. Lee, "Speckle analysis and smoothing of synthetic aperture radar images," Comput. Graph. Image Process. 17, 24-32 (1981).
    [CrossRef]
  16. D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Anal. Mach. Intell. 7, 165-177 (1985).
    [CrossRef] [PubMed]
  17. A. Lopes, R. Touzi, and E. Nesby, "Adaptive speckle filter and scene heterogeneity," IEEE Trans. Geosci. Remote Sens. 28, 992-1000 (1990).
    [CrossRef]
  18. J. L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach (Cambridge U. Press, 1998).
    [CrossRef]
  19. S. I. Fraser and A. R. Allen, "A speckle reduction algorithm using the à trous wavelet transform," in Proceedings of the IASTED International Conference on Visualization, Imaging and Image Processing, (ACTA, 2001), pp. 313-318.
    [PubMed]
  20. A. Nieminen, P. Heinonen, and Y. Neuvo, "A new class of detail-preserving filters for image-processing," IEEE Trans. Pattern Anal. Mach. Intell. 9, 74-90 (1987).
    [CrossRef] [PubMed]
  21. D. Harwood, M. Subbarao, H. Hakalahti, and L. Davis, "A new class of edge-preserving smoothing filters," Pattern Recogn. Lett. 6, 155-162 (1987).
    [CrossRef]
  22. M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, Digital Processing of Biomedical Images (Plenum, 1976), pp. 187-203.
  23. S. J. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).
  24. D. Sauter and L. Parson, "Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images," IEEE J. Ocean. Eng. 19, 563-576 (1994).
    [CrossRef]
  25. E. Kofidis, S. Theodoridis, C. Kotropoulos, and I. Pitas, "Nonlinear adaptive filters for speckle suppression in ultrasonic images," Signal Process. 52, 357-372 (1996).
    [CrossRef]
  26. V. V. Zaitsev and D. V. Troshkin, "Experimental study of speckle-noise filtering algorithms for radar images," Earth Observation and Remote Sensing 12, 831-846 (1995).
  27. A. A. Vassiliou, M. Bouluanne, and J. A. R. Blais, "On the application of averaging median filters in remote sensing," IEEE Trans. Geosci. Remote Sens. 26, 832-838 (1988).
    [CrossRef]
  28. J. Salo, Y. Neuvo, and V. Hameenaho, "Improving TV picture quality with linear-median type operations," IEEE Trans. Consum. Electron. 34, 373-379 (1988).
    [CrossRef]
  29. G. Harauz and A. Fonglochovsky, "Automatic selection of macromolecules from electron micrographs by component labeling and symbolic processing," Ultramicroscopy 31, 333-344 (1989).
    [CrossRef] [PubMed]
  30. A. C. Kokaram, N. Persad, J. Lasenby, W. J. Fitzgerald, A. McKinnan, and M. Welland, "Restoration of images from the scanning-tunneling microscope," Appl. Opt. 34, 5121-5132 (1995).
    [CrossRef] [PubMed]
  31. S. D. Bohmig, H. Beilschmidt, and B. M. Reichl, "Noise suppression in scanning Auger images—Comparison of various digital filters," Fresenius' J. Anal. Chem. 346, 196-199 (1993).
    [CrossRef]
  32. V. Chandran and S. Elgar, "Detection of sea mines in sonar imagery using higher-order spectral features," in Proc. SPIE 3710, 578-587 (1999).
    [CrossRef]
  33. X. H. Wang, R. S. H. Istepanian, and Y. H. Song, "Microarray image enhancement by denoising using stationary wavelet transform," IEEE Trans. Nanobiosci. 2, 184-189 (2003).
    [CrossRef]
  34. J. Wen, H. Lu, T. Li, and Z. Liang, "Analytical solution to 3D SPECT reconstruction with non-uniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators," Proc. SPIE 5032, 1858-1867 (2003).
    [CrossRef]
  35. Y. Funama, Y. Noguchi, and M. Shimamura, "Reduction of artifacts in degraded CT image by adaptive Wiener filter," Jpn. J. Med. Electron. Biol. Eng. 40, 1-6 (2002).
  36. F. V. Wegner, M. Both, and R. H. A. Fink, "Automated detection of elementary calcium release events using the à trous wavelet transform," Biophys. J. 90, 2151-2163 (2006).
    [CrossRef]
  37. J. L. Starck and F. Murtagh, "Automatic noise estimation from the multiresolution support," Publ. Astron. Soc. Pac. 110, 193-199 (1998).
    [CrossRef]
  38. G. Stenborg and P. J. Cobelli, "A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures," Astron. Astrophys. 398, 1185-1193 (2003).
    [CrossRef]
  39. J. C. Olivo-Marin, "Extraction of spots in biological images using multiscale products," Pattern Recogn. 35, 1989-1996 (2002).
    [CrossRef]
  40. L. Muresan, B. Heise, and E. P. Klement, "Tracking fluorescent spots in wide-field microscopy images," Proc. SPIE 6070, 203-212 (2006).
  41. J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.
  42. F. J. Humphreys, P. S. Bate, and P. J. Hurley, "Orientation averaging of electron backscattered diffraction data," J. Microsc. 201, 50-58 (2001).
    [CrossRef] [PubMed]
  43. K. Minato, Y.-N. Tang, G. W. Bennett, and A. B. Brill, "Automatic contour detection using a fixed-point Hachimura-Kuwahara filter for SPECT attenuation correction," IEEE Trans. Med. Imaging MI-6, 126-133 (1987).
    [CrossRef]
  44. M. van Staalduinen, J. C. A. van der Lubbe, and E. Backer, "Circular analysis-based line detection filters for watermark extraction in x-ray images of etchings," in Proceedings of the Tenth Annual Conference of the Advanced School for Computing and Imaging (ASCI, 2004), pp. 305-310.
  45. D. de Ridder, R. P. W. Duin, P. W. Verbeek, and L. J. van Vliet, "The applicability of neural networks to non-linear image processing," Pattern Anal. Appl. 2, 111-128 (1999).
    [CrossRef]

2006 (3)

F. V. Wegner, M. Both, and R. H. A. Fink, "Automated detection of elementary calcium release events using the à trous wavelet transform," Biophys. J. 90, 2151-2163 (2006).
[CrossRef]

L. Muresan, B. Heise, and E. P. Klement, "Tracking fluorescent spots in wide-field microscopy images," Proc. SPIE 6070, 203-212 (2006).

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging," Opt. Express 14, 4736-4745 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

M. van Staalduinen, J. C. A. van der Lubbe, and E. Backer, "Circular analysis-based line detection filters for watermark extraction in x-ray images of etchings," in Proceedings of the Tenth Annual Conference of the Advanced School for Computing and Imaging (ASCI, 2004), pp. 305-310.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004).
[CrossRef] [PubMed]

D. C. Adler, T. H. Ko, and J. G. Fujimoto, "Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter," Opt. Lett. 29, 2878-2880 (2004).
[CrossRef]

2003 (4)

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

G. Stenborg and P. J. Cobelli, "A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures," Astron. Astrophys. 398, 1185-1193 (2003).
[CrossRef]

X. H. Wang, R. S. H. Istepanian, and Y. H. Song, "Microarray image enhancement by denoising using stationary wavelet transform," IEEE Trans. Nanobiosci. 2, 184-189 (2003).
[CrossRef]

J. Wen, H. Lu, T. Li, and Z. Liang, "Analytical solution to 3D SPECT reconstruction with non-uniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators," Proc. SPIE 5032, 1858-1867 (2003).
[CrossRef]

2002 (2)

Y. Funama, Y. Noguchi, and M. Shimamura, "Reduction of artifacts in degraded CT image by adaptive Wiener filter," Jpn. J. Med. Electron. Biol. Eng. 40, 1-6 (2002).

J. C. Olivo-Marin, "Extraction of spots in biological images using multiscale products," Pattern Recogn. 35, 1989-1996 (2002).
[CrossRef]

2001 (2)

F. J. Humphreys, P. S. Bate, and P. J. Hurley, "Orientation averaging of electron backscattered diffraction data," J. Microsc. 201, 50-58 (2001).
[CrossRef] [PubMed]

S. I. Fraser and A. R. Allen, "A speckle reduction algorithm using the à trous wavelet transform," in Proceedings of the IASTED International Conference on Visualization, Imaging and Image Processing, (ACTA, 2001), pp. 313-318.
[PubMed]

2000 (2)

M. Bashkansky and J. Reintjes, "Statistics and reduction of speckle in optical coherence tomography," Opt. Lett. 25, 545-547 (2000).
[CrossRef]

J. Rogowska and M. E. Brezinski, "Evaluation of adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
[CrossRef]

1999 (4)

V. Chandran and S. Elgar, "Detection of sea mines in sonar imagery using higher-order spectral features," in Proc. SPIE 3710, 578-587 (1999).
[CrossRef]

D. de Ridder, R. P. W. Duin, P. W. Verbeek, and L. J. van Vliet, "The applicability of neural networks to non-linear image processing," Pattern Anal. Appl. 2, 111-128 (1999).
[CrossRef]

K. M. Yung, S. L. Lee, and J. M. Schmitt, "Phase-domain processing of optical coherence tomography images," J. Biomed. Opt. 4, 125-136 (1999).
[CrossRef]

T. Asakura, International Trends in Optics and Photonics ICO IV (Springer-Verlag, 1999), pp. 359-389.

1998 (2)

J. L. Starck and F. Murtagh, "Automatic noise estimation from the multiresolution support," Publ. Astron. Soc. Pac. 110, 193-199 (1998).
[CrossRef]

J. L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach (Cambridge U. Press, 1998).
[CrossRef]

1997 (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997).
[CrossRef] [PubMed]

1996 (1)

E. Kofidis, S. Theodoridis, C. Kotropoulos, and I. Pitas, "Nonlinear adaptive filters for speckle suppression in ultrasonic images," Signal Process. 52, 357-372 (1996).
[CrossRef]

1995 (4)

V. V. Zaitsev and D. V. Troshkin, "Experimental study of speckle-noise filtering algorithms for radar images," Earth Observation and Remote Sensing 12, 831-846 (1995).

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

A. C. Kokaram, N. Persad, J. Lasenby, W. J. Fitzgerald, A. McKinnan, and M. Welland, "Restoration of images from the scanning-tunneling microscope," Appl. Opt. 34, 5121-5132 (1995).
[CrossRef] [PubMed]

1994 (1)

D. Sauter and L. Parson, "Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images," IEEE J. Ocean. Eng. 19, 563-576 (1994).
[CrossRef]

1993 (1)

S. D. Bohmig, H. Beilschmidt, and B. M. Reichl, "Noise suppression in scanning Auger images—Comparison of various digital filters," Fresenius' J. Anal. Chem. 346, 196-199 (1993).
[CrossRef]

1992 (1)

J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.

1991 (1)

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1990 (2)

S. J. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).

A. Lopes, R. Touzi, and E. Nesby, "Adaptive speckle filter and scene heterogeneity," IEEE Trans. Geosci. Remote Sens. 28, 992-1000 (1990).
[CrossRef]

1989 (1)

G. Harauz and A. Fonglochovsky, "Automatic selection of macromolecules from electron micrographs by component labeling and symbolic processing," Ultramicroscopy 31, 333-344 (1989).
[CrossRef] [PubMed]

1988 (2)

A. A. Vassiliou, M. Bouluanne, and J. A. R. Blais, "On the application of averaging median filters in remote sensing," IEEE Trans. Geosci. Remote Sens. 26, 832-838 (1988).
[CrossRef]

J. Salo, Y. Neuvo, and V. Hameenaho, "Improving TV picture quality with linear-median type operations," IEEE Trans. Consum. Electron. 34, 373-379 (1988).
[CrossRef]

1987 (3)

A. Nieminen, P. Heinonen, and Y. Neuvo, "A new class of detail-preserving filters for image-processing," IEEE Trans. Pattern Anal. Mach. Intell. 9, 74-90 (1987).
[CrossRef] [PubMed]

D. Harwood, M. Subbarao, H. Hakalahti, and L. Davis, "A new class of edge-preserving smoothing filters," Pattern Recogn. Lett. 6, 155-162 (1987).
[CrossRef]

K. Minato, Y.-N. Tang, G. W. Bennett, and A. B. Brill, "Automatic contour detection using a fixed-point Hachimura-Kuwahara filter for SPECT attenuation correction," IEEE Trans. Med. Imaging MI-6, 126-133 (1987).
[CrossRef]

1985 (1)

D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Anal. Mach. Intell. 7, 165-177 (1985).
[CrossRef] [PubMed]

1981 (1)

J. S. Lee, "Speckle analysis and smoothing of synthetic aperture radar images," Comput. Graph. Image Process. 17, 24-32 (1981).
[CrossRef]

1976 (1)

M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, Digital Processing of Biomedical Images (Plenum, 1976), pp. 187-203.

Adler, D. C.

Allen, A. R.

S. I. Fraser and A. R. Allen, "A speckle reduction algorithm using the à trous wavelet transform," in Proceedings of the IASTED International Conference on Visualization, Imaging and Image Processing, (ACTA, 2001), pp. 313-318.
[PubMed]

Asakura, T.

T. Asakura, International Trends in Optics and Photonics ICO IV (Springer-Verlag, 1999), pp. 359-389.

Backer, E.

M. van Staalduinen, J. C. A. van der Lubbe, and E. Backer, "Circular analysis-based line detection filters for watermark extraction in x-ray images of etchings," in Proceedings of the Tenth Annual Conference of the Advanced School for Computing and Imaging (ASCI, 2004), pp. 305-310.

Bajraszewski, T.

Bashkansky, M.

Bate, P. S.

F. J. Humphreys, P. S. Bate, and P. J. Hurley, "Orientation averaging of electron backscattered diffraction data," J. Microsc. 201, 50-58 (2001).
[CrossRef] [PubMed]

Beilschmidt, H.

S. D. Bohmig, H. Beilschmidt, and B. M. Reichl, "Noise suppression in scanning Auger images—Comparison of various digital filters," Fresenius' J. Anal. Chem. 346, 196-199 (1993).
[CrossRef]

Bennett, G. W.

K. Minato, Y.-N. Tang, G. W. Bennett, and A. B. Brill, "Automatic contour detection using a fixed-point Hachimura-Kuwahara filter for SPECT attenuation correction," IEEE Trans. Med. Imaging MI-6, 126-133 (1987).
[CrossRef]

Bijaoui, A.

J. L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach (Cambridge U. Press, 1998).
[CrossRef]

Bister, M.

J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.

Blais, J. A. R.

A. A. Vassiliou, M. Bouluanne, and J. A. R. Blais, "On the application of averaging median filters in remote sensing," IEEE Trans. Geosci. Remote Sens. 26, 832-838 (1988).
[CrossRef]

Bohmig, S. D.

S. D. Bohmig, H. Beilschmidt, and B. M. Reichl, "Noise suppression in scanning Auger images—Comparison of various digital filters," Fresenius' J. Anal. Chem. 346, 196-199 (1993).
[CrossRef]

Boppart, S. A.

D. L. Marks, T. S. Ralston, and S. A. Boppart, "Speckle reduction by I-divergence regularization in optical coherence tomography," J. Opt. Soc. Am. A 22, 2366-2371 (2005).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Both, M.

F. V. Wegner, M. Both, and R. H. A. Fink, "Automated detection of elementary calcium release events using the à trous wavelet transform," Biophys. J. 90, 2151-2163 (2006).
[CrossRef]

Bouluanne, M.

A. A. Vassiliou, M. Bouluanne, and J. A. R. Blais, "On the application of averaging median filters in remote sensing," IEEE Trans. Geosci. Remote Sens. 26, 832-838 (1988).
[CrossRef]

Bouma, B.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Bouma, B. E.

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging," Opt. Express 14, 4736-4745 (2006).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, "Evaluation of adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Brill, A. B.

K. Minato, Y.-N. Tang, G. W. Bennett, and A. B. Brill, "Automatic contour detection using a fixed-point Hachimura-Kuwahara filter for SPECT attenuation correction," IEEE Trans. Med. Imaging MI-6, 126-133 (1987).
[CrossRef]

Chandran, V.

V. Chandran and S. Elgar, "Detection of sea mines in sonar imagery using higher-order spectral features," in Proc. SPIE 3710, 578-587 (1999).
[CrossRef]

Chang, W.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chavel, P.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Anal. Mach. Intell. 7, 165-177 (1985).
[CrossRef] [PubMed]

Cobelli, P. J.

G. Stenborg and P. J. Cobelli, "A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures," Astron. Astrophys. 398, 1185-1193 (2003).
[CrossRef]

Cornelis, A.

J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.

Cornelis, J.

J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.

Davis, L.

D. Harwood, M. Subbarao, H. Hakalahti, and L. Davis, "A new class of edge-preserving smoothing filters," Pattern Recogn. Lett. 6, 155-162 (1987).
[CrossRef]

De Becker, J.

J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.

de Ridder, D.

D. de Ridder, R. P. W. Duin, P. W. Verbeek, and L. J. van Vliet, "The applicability of neural networks to non-linear image processing," Pattern Anal. Appl. 2, 111-128 (1999).
[CrossRef]

Demonceau, G.

J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.

Desjardins, A. E.

Drexler, W.

Duin, R. P. W

D. de Ridder, R. P. W. Duin, P. W. Verbeek, and L. J. van Vliet, "The applicability of neural networks to non-linear image processing," Pattern Anal. Appl. 2, 111-128 (1999).
[CrossRef]

Eiho, S.

M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, Digital Processing of Biomedical Images (Plenum, 1976), pp. 187-203.

Elgar, S.

V. Chandran and S. Elgar, "Detection of sea mines in sonar imagery using higher-order spectral features," in Proc. SPIE 3710, 578-587 (1999).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A.

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fink, R. H. A

F. V. Wegner, M. Both, and R. H. A. Fink, "Automated detection of elementary calcium release events using the à trous wavelet transform," Biophys. J. 90, 2151-2163 (2006).
[CrossRef]

Fitzgerald, W. J.

Flotte, T.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fonglochovsky, A.

G. Harauz and A. Fonglochovsky, "Automatic selection of macromolecules from electron micrographs by component labeling and symbolic processing," Ultramicroscopy 31, 333-344 (1989).
[CrossRef] [PubMed]

Fraser, S. I.

S. I. Fraser and A. R. Allen, "A speckle reduction algorithm using the à trous wavelet transform," in Proceedings of the IASTED International Conference on Visualization, Imaging and Image Processing, (ACTA, 2001), pp. 313-318.
[PubMed]

Fujimoto, J. G.

D. C. Adler, T. H. Ko, and J. G. Fujimoto, "Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter," Opt. Lett. 29, 2878-2880 (2004).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Funama, Y.

Y. Funama, Y. Noguchi, and M. Shimamura, "Reduction of artifacts in degraded CT image by adaptive Wiener filter," Jpn. J. Med. Electron. Biol. Eng. 40, 1-6 (2002).

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

Gregory, K

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hachimura, K.

M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, Digital Processing of Biomedical Images (Plenum, 1976), pp. 187-203.

Hakalahti, H.

D. Harwood, M. Subbarao, H. Hakalahti, and L. Davis, "A new class of edge-preserving smoothing filters," Pattern Recogn. Lett. 6, 155-162 (1987).
[CrossRef]

Hameenaho, V.

J. Salo, Y. Neuvo, and V. Hameenaho, "Improving TV picture quality with linear-median type operations," IEEE Trans. Consum. Electron. 34, 373-379 (1988).
[CrossRef]

Harauz, G.

G. Harauz and A. Fonglochovsky, "Automatic selection of macromolecules from electron micrographs by component labeling and symbolic processing," Ultramicroscopy 31, 333-344 (1989).
[CrossRef] [PubMed]

Harwood, D.

D. Harwood, M. Subbarao, H. Hakalahti, and L. Davis, "A new class of edge-preserving smoothing filters," Pattern Recogn. Lett. 6, 155-162 (1987).
[CrossRef]

Hee, M. R.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Heinonen, P.

A. Nieminen, P. Heinonen, and Y. Neuvo, "A new class of detail-preserving filters for image-processing," IEEE Trans. Pattern Anal. Mach. Intell. 9, 74-90 (1987).
[CrossRef] [PubMed]

Heise, B.

L. Muresan, B. Heise, and E. P. Klement, "Tracking fluorescent spots in wide-field microscopy images," Proc. SPIE 6070, 203-212 (2006).

Hermann, B.

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Huang, D.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Humphreys, F. J.

F. J. Humphreys, P. S. Bate, and P. J. Hurley, "Orientation averaging of electron backscattered diffraction data," J. Microsc. 201, 50-58 (2001).
[CrossRef] [PubMed]

Hurley, P. J.

F. J. Humphreys, P. S. Bate, and P. J. Hurley, "Orientation averaging of electron backscattered diffraction data," J. Microsc. 201, 50-58 (2001).
[CrossRef] [PubMed]

Istepanian, R. S. H.

X. H. Wang, R. S. H. Istepanian, and Y. H. Song, "Microarray image enhancement by denoising using stationary wavelet transform," IEEE Trans. Nanobiosci. 2, 184-189 (2003).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kinoshita, M.

M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, Digital Processing of Biomedical Images (Plenum, 1976), pp. 187-203.

Klement, E. P.

L. Muresan, B. Heise, and E. P. Klement, "Tracking fluorescent spots in wide-field microscopy images," Proc. SPIE 6070, 203-212 (2006).

Ko, T. H.

Kofidis, E.

E. Kofidis, S. Theodoridis, C. Kotropoulos, and I. Pitas, "Nonlinear adaptive filters for speckle suppression in ultrasonic images," Signal Process. 52, 357-372 (1996).
[CrossRef]

Kokaram, A. C.

Kotropoulos, C.

E. Kofidis, S. Theodoridis, C. Kotropoulos, and I. Pitas, "Nonlinear adaptive filters for speckle suppression in ultrasonic images," Signal Process. 52, 357-372 (1996).
[CrossRef]

Kuan, D. T.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Anal. Mach. Intell. 7, 165-177 (1985).
[CrossRef] [PubMed]

Kuwahara, M.

M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, Digital Processing of Biomedical Images (Plenum, 1976), pp. 187-203.

Lasenby, J.

Le, T.

Lee, J. S.

J. S. Lee, "Speckle analysis and smoothing of synthetic aperture radar images," Comput. Graph. Image Process. 17, 24-32 (1981).
[CrossRef]

Lee, S. L.

K. M. Yung, S. L. Lee, and J. M. Schmitt, "Phase-domain processing of optical coherence tomography images," J. Biomed. Opt. 4, 125-136 (1999).
[CrossRef]

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

Leitgeb, R. A.

Li, T.

J. Wen, H. Lu, T. Li, and Z. Liang, "Analytical solution to 3D SPECT reconstruction with non-uniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators," Proc. SPIE 5032, 1858-1867 (2003).
[CrossRef]

Liang, Z.

J. Wen, H. Lu, T. Li, and Z. Liang, "Analytical solution to 3D SPECT reconstruction with non-uniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators," Proc. SPIE 5032, 1858-1867 (2003).
[CrossRef]

Lim, S. J.

S. J. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).

Lin, C. P.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lopes, A.

A. Lopes, R. Touzi, and E. Nesby, "Adaptive speckle filter and scene heterogeneity," IEEE Trans. Geosci. Remote Sens. 28, 992-1000 (1990).
[CrossRef]

Lu, H.

J. Wen, H. Lu, T. Li, and Z. Liang, "Analytical solution to 3D SPECT reconstruction with non-uniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators," Proc. SPIE 5032, 1858-1867 (2003).
[CrossRef]

Marks, D. L.

McKinnan, A.

Minato, K.

K. Minato, Y.-N. Tang, G. W. Bennett, and A. B. Brill, "Automatic contour detection using a fixed-point Hachimura-Kuwahara filter for SPECT attenuation correction," IEEE Trans. Med. Imaging MI-6, 126-133 (1987).
[CrossRef]

Muresan, L.

L. Muresan, B. Heise, and E. P. Klement, "Tracking fluorescent spots in wide-field microscopy images," Proc. SPIE 6070, 203-212 (2006).

Murtagh, F.

J. L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach (Cambridge U. Press, 1998).
[CrossRef]

J. L. Starck and F. Murtagh, "Automatic noise estimation from the multiresolution support," Publ. Astron. Soc. Pac. 110, 193-199 (1998).
[CrossRef]

Nesby, E.

A. Lopes, R. Touzi, and E. Nesby, "Adaptive speckle filter and scene heterogeneity," IEEE Trans. Geosci. Remote Sens. 28, 992-1000 (1990).
[CrossRef]

Neuvo, Y.

J. Salo, Y. Neuvo, and V. Hameenaho, "Improving TV picture quality with linear-median type operations," IEEE Trans. Consum. Electron. 34, 373-379 (1988).
[CrossRef]

A. Nieminen, P. Heinonen, and Y. Neuvo, "A new class of detail-preserving filters for image-processing," IEEE Trans. Pattern Anal. Mach. Intell. 9, 74-90 (1987).
[CrossRef] [PubMed]

Nieminen, A.

A. Nieminen, P. Heinonen, and Y. Neuvo, "A new class of detail-preserving filters for image-processing," IEEE Trans. Pattern Anal. Mach. Intell. 9, 74-90 (1987).
[CrossRef] [PubMed]

Noguchi, Y.

Y. Funama, Y. Noguchi, and M. Shimamura, "Reduction of artifacts in degraded CT image by adaptive Wiener filter," Jpn. J. Med. Electron. Biol. Eng. 40, 1-6 (2002).

Olivo-Marin, J. C.

J. C. Olivo-Marin, "Extraction of spots in biological images using multiscale products," Pattern Recogn. 35, 1989-1996 (2002).
[CrossRef]

Parson, L.

D. Sauter and L. Parson, "Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images," IEEE J. Ocean. Eng. 19, 563-576 (1994).
[CrossRef]

Persad, N.

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

Pitas, I.

E. Kofidis, S. Theodoridis, C. Kotropoulos, and I. Pitas, "Nonlinear adaptive filters for speckle suppression in ultrasonic images," Signal Process. 52, 357-372 (1996).
[CrossRef]

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ralston, T. S.

Reichl, B. M.

S. D. Bohmig, H. Beilschmidt, and B. M. Reichl, "Noise suppression in scanning Auger images—Comparison of various digital filters," Fresenius' J. Anal. Chem. 346, 196-199 (1993).
[CrossRef]

Reintjes, J.

Rogowska, J.

J. Rogowska and M. E. Brezinski, "Evaluation of adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
[CrossRef]

Salo, J.

J. Salo, Y. Neuvo, and V. Hameenaho, "Improving TV picture quality with linear-median type operations," IEEE Trans. Consum. Electron. 34, 373-379 (1988).
[CrossRef]

Sauter, D.

D. Sauter and L. Parson, "Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images," IEEE J. Ocean. Eng. 19, 563-576 (1994).
[CrossRef]

Sawchuk, A. A.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Anal. Mach. Intell. 7, 165-177 (1985).
[CrossRef] [PubMed]

Schmitt, J. M.

K. M. Yung, S. L. Lee, and J. M. Schmitt, "Phase-domain processing of optical coherence tomography images," J. Biomed. Opt. 4, 125-136 (1999).
[CrossRef]

J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shimamura, M.

Y. Funama, Y. Noguchi, and M. Shimamura, "Reduction of artifacts in degraded CT image by adaptive Wiener filter," Jpn. J. Med. Electron. Biol. Eng. 40, 1-6 (2002).

Song, Y. H.

X. H. Wang, R. S. H. Istepanian, and Y. H. Song, "Microarray image enhancement by denoising using stationary wavelet transform," IEEE Trans. Nanobiosci. 2, 184-189 (2003).
[CrossRef]

Southern, J F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Southern, J. F.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Starck, J. L.

J. L. Starck and F. Murtagh, "Automatic noise estimation from the multiresolution support," Publ. Astron. Soc. Pac. 110, 193-199 (1998).
[CrossRef]

J. L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach (Cambridge U. Press, 1998).
[CrossRef]

Stenborg, G.

G. Stenborg and P. J. Cobelli, "A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures," Astron. Astrophys. 398, 1185-1193 (2003).
[CrossRef]

Stingl, A.

Stinson, W. G.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Strand, T. C.

D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Anal. Mach. Intell. 7, 165-177 (1985).
[CrossRef] [PubMed]

Subbarao, M.

D. Harwood, M. Subbarao, H. Hakalahti, and L. Davis, "A new class of edge-preserving smoothing filters," Pattern Recogn. Lett. 6, 155-162 (1987).
[CrossRef]

Swanson, E.

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Tang, Y.-N.

K. Minato, Y.-N. Tang, G. W. Bennett, and A. B. Brill, "Automatic contour detection using a fixed-point Hachimura-Kuwahara filter for SPECT attenuation correction," IEEE Trans. Med. Imaging MI-6, 126-133 (1987).
[CrossRef]

Tearney, G. J.

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, "Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging," Opt. Express 14, 4736-4745 (2006).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Theodoridis, S.

E. Kofidis, S. Theodoridis, C. Kotropoulos, and I. Pitas, "Nonlinear adaptive filters for speckle suppression in ultrasonic images," Signal Process. 52, 357-372 (1996).
[CrossRef]

Touzi, R.

A. Lopes, R. Touzi, and E. Nesby, "Adaptive speckle filter and scene heterogeneity," IEEE Trans. Geosci. Remote Sens. 28, 992-1000 (1990).
[CrossRef]

Troshkin, D. V.

V. V. Zaitsev and D. V. Troshkin, "Experimental study of speckle-noise filtering algorithms for radar images," Earth Observation and Remote Sensing 12, 831-846 (1995).

Unterhuber, A.

Vakoc, B. J.

van der Lubbe, J. C. A

M. van Staalduinen, J. C. A. van der Lubbe, and E. Backer, "Circular analysis-based line detection filters for watermark extraction in x-ray images of etchings," in Proceedings of the Tenth Annual Conference of the Advanced School for Computing and Imaging (ASCI, 2004), pp. 305-310.

van Staalduinen, M.

M. van Staalduinen, J. C. A. van der Lubbe, and E. Backer, "Circular analysis-based line detection filters for watermark extraction in x-ray images of etchings," in Proceedings of the Tenth Annual Conference of the Advanced School for Computing and Imaging (ASCI, 2004), pp. 305-310.

van Vliet, L. J.

D. de Ridder, R. P. W. Duin, P. W. Verbeek, and L. J. van Vliet, "The applicability of neural networks to non-linear image processing," Pattern Anal. Appl. 2, 111-128 (1999).
[CrossRef]

Vanhove, C.

J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.

Vassiliou, A. A.

A. A. Vassiliou, M. Bouluanne, and J. A. R. Blais, "On the application of averaging median filters in remote sensing," IEEE Trans. Geosci. Remote Sens. 26, 832-838 (1988).
[CrossRef]

Verbeek, P. W.

D. de Ridder, R. P. W. Duin, P. W. Verbeek, and L. J. van Vliet, "The applicability of neural networks to non-linear image processing," Pattern Anal. Appl. 2, 111-128 (1999).
[CrossRef]

Wang, X. H.

X. H. Wang, R. S. H. Istepanian, and Y. H. Song, "Microarray image enhancement by denoising using stationary wavelet transform," IEEE Trans. Nanobiosci. 2, 184-189 (2003).
[CrossRef]

Wegner, F. V.

F. V. Wegner, M. Both, and R. H. A. Fink, "Automated detection of elementary calcium release events using the à trous wavelet transform," Biophys. J. 90, 2151-2163 (2006).
[CrossRef]

Welland, M.

Wen, J.

J. Wen, H. Lu, T. Li, and Z. Liang, "Analytical solution to 3D SPECT reconstruction with non-uniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators," Proc. SPIE 5032, 1858-1867 (2003).
[CrossRef]

Yung, K. M.

K. M. Yung, S. L. Lee, and J. M. Schmitt, "Phase-domain processing of optical coherence tomography images," J. Biomed. Opt. 4, 125-136 (1999).
[CrossRef]

Zaitsev, V. V.

V. V. Zaitsev and D. V. Troshkin, "Experimental study of speckle-noise filtering algorithms for radar images," Earth Observation and Remote Sensing 12, 831-846 (1995).

Appl. Opt. (1)

Astron. Astrophys. (1)

G. Stenborg and P. J. Cobelli, "A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures," Astron. Astrophys. 398, 1185-1193 (2003).
[CrossRef]

Biophys. J. (1)

F. V. Wegner, M. Both, and R. H. A. Fink, "Automated detection of elementary calcium release events using the à trous wavelet transform," Biophys. J. 90, 2151-2163 (2006).
[CrossRef]

Comput. Graph. Image Process. (1)

J. S. Lee, "Speckle analysis and smoothing of synthetic aperture radar images," Comput. Graph. Image Process. 17, 24-32 (1981).
[CrossRef]

Earth Observation and Remote Sensing (1)

V. V. Zaitsev and D. V. Troshkin, "Experimental study of speckle-noise filtering algorithms for radar images," Earth Observation and Remote Sensing 12, 831-846 (1995).

Fresenius' J. Anal. Chem. (1)

S. D. Bohmig, H. Beilschmidt, and B. M. Reichl, "Noise suppression in scanning Auger images—Comparison of various digital filters," Fresenius' J. Anal. Chem. 346, 196-199 (1993).
[CrossRef]

IEEE J. Ocean. Eng. (1)

D. Sauter and L. Parson, "Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA images," IEEE J. Ocean. Eng. 19, 563-576 (1994).
[CrossRef]

IEEE Trans. Consum. Electron. (1)

J. Salo, Y. Neuvo, and V. Hameenaho, "Improving TV picture quality with linear-median type operations," IEEE Trans. Consum. Electron. 34, 373-379 (1988).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

A. A. Vassiliou, M. Bouluanne, and J. A. R. Blais, "On the application of averaging median filters in remote sensing," IEEE Trans. Geosci. Remote Sens. 26, 832-838 (1988).
[CrossRef]

A. Lopes, R. Touzi, and E. Nesby, "Adaptive speckle filter and scene heterogeneity," IEEE Trans. Geosci. Remote Sens. 28, 992-1000 (1990).
[CrossRef]

IEEE Trans. Med. Imaging (2)

J. Rogowska and M. E. Brezinski, "Evaluation of adaptive speckle suppression filter for coronary optical coherence tomography imaging," IEEE Trans. Med. Imaging 19, 1261-1266 (2000).
[CrossRef]

K. Minato, Y.-N. Tang, G. W. Bennett, and A. B. Brill, "Automatic contour detection using a fixed-point Hachimura-Kuwahara filter for SPECT attenuation correction," IEEE Trans. Med. Imaging MI-6, 126-133 (1987).
[CrossRef]

IEEE Trans. Nanobiosci. (1)

X. H. Wang, R. S. H. Istepanian, and Y. H. Song, "Microarray image enhancement by denoising using stationary wavelet transform," IEEE Trans. Nanobiosci. 2, 184-189 (2003).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

A. Nieminen, P. Heinonen, and Y. Neuvo, "A new class of detail-preserving filters for image-processing," IEEE Trans. Pattern Anal. Mach. Intell. 9, 74-90 (1987).
[CrossRef] [PubMed]

D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Anal. Mach. Intell. 7, 165-177 (1985).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

K. M. Yung, S. L. Lee, and J. M. Schmitt, "Phase-domain processing of optical coherence tomography images," J. Biomed. Opt. 4, 125-136 (1999).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, "Speckle reduction in optical coherence tomography by frequency compounding," J. Biomed. Opt. 8, 565-569 (2003).
[CrossRef] [PubMed]

J. Microsc. (1)

F. J. Humphreys, P. S. Bate, and P. J. Hurley, "Orientation averaging of electron backscattered diffraction data," J. Microsc. 201, 50-58 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Jpn. J. Med. Electron. Biol. Eng. (1)

Y. Funama, Y. Noguchi, and M. Shimamura, "Reduction of artifacts in degraded CT image by adaptive Wiener filter," Jpn. J. Med. Electron. Biol. Eng. 40, 1-6 (2002).

Nat. Med. (1)

J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, "Optical biopsy and imaging using optical coherence tomography," Nat. Med. 1, 970-972 (1995).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Pattern Anal. Appl. (1)

D. de Ridder, R. P. W. Duin, P. W. Verbeek, and L. J. van Vliet, "The applicability of neural networks to non-linear image processing," Pattern Anal. Appl. 2, 111-128 (1999).
[CrossRef]

Pattern Recogn. (1)

J. C. Olivo-Marin, "Extraction of spots in biological images using multiscale products," Pattern Recogn. 35, 1989-1996 (2002).
[CrossRef]

Pattern Recogn. Lett. (1)

D. Harwood, M. Subbarao, H. Hakalahti, and L. Davis, "A new class of edge-preserving smoothing filters," Pattern Recogn. Lett. 6, 155-162 (1987).
[CrossRef]

Phys. Med. Biol. (1)

J. M. Schmitt, "Array detection for speckle reduction in optical coherence microscopy," Phys. Med. Biol. 42, 1427-1439 (1997).
[CrossRef] [PubMed]

Proc. SPIE (3)

J. Wen, H. Lu, T. Li, and Z. Liang, "Analytical solution to 3D SPECT reconstruction with non-uniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators," Proc. SPIE 5032, 1858-1867 (2003).
[CrossRef]

V. Chandran and S. Elgar, "Detection of sea mines in sonar imagery using higher-order spectral features," in Proc. SPIE 3710, 578-587 (1999).
[CrossRef]

L. Muresan, B. Heise, and E. P. Klement, "Tracking fluorescent spots in wide-field microscopy images," Proc. SPIE 6070, 203-212 (2006).

Publ. Astron. Soc. Pac. (1)

J. L. Starck and F. Murtagh, "Automatic noise estimation from the multiresolution support," Publ. Astron. Soc. Pac. 110, 193-199 (1998).
[CrossRef]

Science (2)

D. Huang, E. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Signal Process. (1)

E. Kofidis, S. Theodoridis, C. Kotropoulos, and I. Pitas, "Nonlinear adaptive filters for speckle suppression in ultrasonic images," Signal Process. 52, 357-372 (1996).
[CrossRef]

Ultramicroscopy (1)

G. Harauz and A. Fonglochovsky, "Automatic selection of macromolecules from electron micrographs by component labeling and symbolic processing," Ultramicroscopy 31, 333-344 (1989).
[CrossRef] [PubMed]

Other (7)

M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, Digital Processing of Biomedical Images (Plenum, 1976), pp. 187-203.

S. J. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).

T. Asakura, International Trends in Optics and Photonics ICO IV (Springer-Verlag, 1999), pp. 359-389.

J. L. Starck, F. Murtagh, and A. Bijaoui, Image Processing and Data Analysis: The Multiscale Approach (Cambridge U. Press, 1998).
[CrossRef]

S. I. Fraser and A. R. Allen, "A speckle reduction algorithm using the à trous wavelet transform," in Proceedings of the IASTED International Conference on Visualization, Imaging and Image Processing, (ACTA, 2001), pp. 313-318.
[PubMed]

M. van Staalduinen, J. C. A. van der Lubbe, and E. Backer, "Circular analysis-based line detection filters for watermark extraction in x-ray images of etchings," in Proceedings of the Tenth Annual Conference of the Advanced School for Computing and Imaging (ASCI, 2004), pp. 305-310.

J. Cornelis, J. De Becker, M. Bister, C. Vanhove, G. Demonceau, and A. Cornelis, "Techniques for cardiac image segmentation," in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 1992), Vol. 14, pp. 1906-1908.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Performance summary of various speckle-reduction filters applied to a bovine retina OFDI image. (a) and (b) show SNR, ENL, and CNR computed for each case. The results of (a) have been obtained by filtering the final image after angle compounding (postcompounding), whereas the results of (b) have been obtained by filtering each individual angle before forming the final angle compound image (precompounding). (c) and (d) show the average FOM for (a) and (b), respectively. (e) and (f) show the MSE of each filter, as defined in Eq. (2). N, number of angles; NF, no filtering; CNR, contrast-to-ratio; SNR, signal-to-noise ratio; ENL, equivalent number of looks; FOM, figure of merit; MSE, mean-square error; “(Linear),” filter applied to linear image as opposed to the logarithmic image. Only promising linear filter results are shown.

Fig. 2
Fig. 2

Image recovery results for the à trous wavelet-transform-based filters (1 and 2), the ELEE, and the adaptive Wiener filters applied to the unfiltered images (postcompounding filtering). N number of angles; linear, filter applied to the linear image as opposed to the logarithmic image. The dashed line in the unfiltered N = 1 image corresponds to the 400th A line, where the cross section of Fig. 3 is taken. Each image has 1000 A lines, where the distance between two adjacent A lines is 5 μ m . There are 370 pixels shown for each A line covering a depth of 2.47 mm in air.

Fig. 3
Fig. 3

Recovery results for the retina edge in a single A line (400th line of Fig. 2) for N = 1 , 4, 16, and 64. The edge of the retina boundary is shown for the NF image as well as for the filtered images. The y axis is in normalized decibel units. Linear, filter applied to the linear image as opposed to the logarithmic image.

Fig. 4
Fig. 4

Recovery results for the wavelet-transform-based filters (Refs. [17, 18]) applied to each angle separately and then added in linear units (precompounding filtering). N number of angles; linear, filter applied to the linear image as opposed to the logarithmic image. Each image has 1000 A lines, where the distance between two adjacent A lines is 5 μ m . There are 370 pixels shown for each A line covering a depth of 2.47 mm in air.

Fig. 5
Fig. 5

Recovery results for the ELEE and the adaptive Wiener filters applied to each angle separately and then added in linear units (precompounding filtering). N, number of angles. Each image has 1000 A lines, where the distance between two adjacent A lines is 5 μ m . There are 370 pixels shown for each A line covering a depth of 2.47 mm in air.

Fig. 6
Fig. 6

Comparison of the performance of precompounding versus postcompounding. In this comparison N = 4 is used. Each image has 250 A lines, where the distance between two adjacent A lines is 5 μ m . One hundred pixels are shown for each A line covering a depth of 0.67 mm in air.

Fig. 7
Fig. 7

Same as Fig. 6, except N = 8 .

Fig. 8
Fig. 8

Image recovery results for the à trous wavelet-transform-based filters (1 and 2), the ELEE, and the adaptive Wiener filters applied to the unfiltered image (top image) of an ex vivo human colon tissue imaged using an OFDI system. N = 1 is used. Each image has 250 A lines, where the distance between two adjacent A lines is 5 μ m . There are 210 pixels shown for each A line covering a depth of 1.40 mm in air.

Tables (2)

Tables Icon

Table 1 Prior Imaging Applications of the Studied Speckle-Reduction Filters

Tables Icon

Table 2 Summary of the Speckle-Reduction Filters [from Figs. 1a, 1e] Applied to the Unfiltered ( N = 4 ) OCT Image of Fig. 2

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SNR = 10 log 10 ( max { F l i n 2 } σ l i n 2 ) ,
CNR = ( 1 R ) r = 1 R ( μ r μ b ) σ r 2 + σ b 2 ,
ENL = ( 1 H ) h = 1 H μ h 2 σ h 2 ,
MSE = I F ( x , y ) I G ( x , y ) 2 d x d y I G ( x , y ) 2 d x d y .

Metrics