Abstract

The influence of incident polarized light, refractive index, and size parameter of the scatterer on achievable resolution and contrast (image quality) of polarization-gated transillumination imaging in turbid media is reported here. Differential polarization detection led to significant improvement of image quality of an object embedded in a medium of small-sized scatterers (diameter Dλ, isotropic scattering medium, anisotropy parameter g0.2), especially using circular polarization. In contrast, for anisotropic scattering media composed of larger-sized scatterers (Dλ,g0.7), the improvement in image quality was less pronounced using either linear or circular polarization gating when the refractive index of the scatterer was high (ns=1.59), but for a lower value of refractive index (ns=1.37), image quality improved with the differential circular polarization gating. We offer a plausible explanation for these observations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Bissonnette, "Imaging through fog and rain," Opt. Eng. 31, 1045-1052 (1992).
    [CrossRef]
  2. V. L. Granatstein, M. Rhinewine, and A. M. Levine, "Depolarization of laser light scattered from turbid water," Appl. Opt. 11, 1870-1871 (1972).
    [CrossRef] [PubMed]
  3. J. C. Hebden, S. R. Arridge, and D. T. Delpy, "Optical imaging in medicine: experimental techniques," Phys. Med. Biol. 42, 825-840 (1997).
    [CrossRef] [PubMed]
  4. C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
    [CrossRef]
  5. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
    [CrossRef]
  6. J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized light to discriminate short-path photons in a multiply scattering medium," Appl. Opt. 31, 6535-6546 (1992).
    [CrossRef] [PubMed]
  7. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
    [CrossRef] [PubMed]
  8. S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt. Express 7, 23-28 (2000).
    [CrossRef] [PubMed]
  9. S. L. Jacques, R. J. Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
    [CrossRef] [PubMed]
  10. S. P. Morgan and I. M. Stockford, "Surface-reflection elimination in polarization imaging of superficial tissue," Opt. Lett. 28, 114-116 (2003).
    [CrossRef] [PubMed]
  11. S. A. Kartazayeva, X. Ni, and R. R. Alfano, "Backscattering target detection in a turbid medium by use of circularly and linearly polarized light," Opt. Lett. 30, 1168-1170 (2005).
    [CrossRef] [PubMed]
  12. S. P. Morgan, M. P. Khong, and M. G. Somekh, "Effects of polarization state and scatterer concentration on optical imaging through scattering media," Appl. Opt. 36, 1560-1565 (1997).
    [CrossRef] [PubMed]
  13. S. P. Schilders, X. S. Gan, and M. Gu, "Resolution improvement in microscopic imaging through turbid media based on differential polarization gating," Appl. Opt. 37, 4300-4302 (1998).
    [CrossRef]
  14. S. P. Schilders, X. S. Gan, and M. Gu, "Effect of scatterer size on microscopic imaging through turbid media based on differential polarization gating," Opt. Commun. 157, 238-248 (1998).
    [CrossRef]
  15. X. Gan, S. P. Schilders, and M. Gu, "Image enhancement through turbid media under a microscope by use of polarization gating methods," J. Opt. Soc. Am. A 16, 2177-2184 (1999).
    [CrossRef]
  16. J. S. Tyo, "Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging," J. Opt. Soc. Am. A 17, 1-10 (2000).
    [CrossRef]
  17. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter," Phys. Rev. E 49, 1767-1770 (1994).
    [CrossRef]
  18. E. E. Gorodnichev, A. I. Kuzolov, and D. B. Rozozkin, "Diffusion of circularly polarized light in a disordered medium with large-scale inhomogeneities," JETP Lett. 68, 22-28 (1998).
    [CrossRef]
  19. A. D. Kim and M. Moscoso, "Influence of the refractive index on the depolarization of multiply scattered waves," Phys. Rev. E 64, 026612 (2001).
    [CrossRef]
  20. X. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, "Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments," J. Biomed. Opt. 8, 608-617 (2003).
    [CrossRef] [PubMed]
  21. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, "Depolarization of backscattered linearly polarized light," J. Opt. Soc. Am. A 21, 1799-1804 (2004).
    [CrossRef]
  22. V. Sankaran, K. Schonenberger, J. T. Walsh, Jr., and D. J. Maitland, "Polarization discrimination of coherently propagating light in turbid media," Appl. Opt. 38, 4252-4261 (1999).
    [CrossRef]
  23. V. Sankaran, J. T. Walsh, Jr. and D. J. Maitland, "Comparative study of polarized light propagation in biological tissues," J. Biomed. Opt. 7, 300-306 (2002).
    [CrossRef] [PubMed]
  24. N. Ghosh, H. S. Patel, and P. K. Gupta, "Depolarization of light in tissue phantoms--effect of a distribution in the size of scatterers," Opt. Express 11, 2198-2205 (2003).
    [CrossRef] [PubMed]
  25. N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, "Depolarization of light in tissue phantoms--effect of collection geometry," Opt. Commun. 222, 93-99 (2003).
    [CrossRef]
  26. N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
    [CrossRef]
  27. C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  28. N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, "Anomalous behavior of depolarization of light in a turbid medium," Phys. Lett. A 354, 236-242 (2006).
    [CrossRef]
  29. A. J. Welch, M. J. C. van Germert, W. M. Star, and B. C. Wilson, "Overview of tissue optics," in Optical Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Germert, eds. (Plenum, l995).

2006

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, "Anomalous behavior of depolarization of light in a turbid medium," Phys. Lett. A 354, 236-242 (2006).
[CrossRef]

2005

2004

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
[CrossRef]

L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, "Depolarization of backscattered linearly polarized light," J. Opt. Soc. Am. A 21, 1799-1804 (2004).
[CrossRef]

2003

X. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, "Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments," J. Biomed. Opt. 8, 608-617 (2003).
[CrossRef] [PubMed]

N. Ghosh, H. S. Patel, and P. K. Gupta, "Depolarization of light in tissue phantoms--effect of a distribution in the size of scatterers," Opt. Express 11, 2198-2205 (2003).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, "Depolarization of light in tissue phantoms--effect of collection geometry," Opt. Commun. 222, 93-99 (2003).
[CrossRef]

S. P. Morgan and I. M. Stockford, "Surface-reflection elimination in polarization imaging of superficial tissue," Opt. Lett. 28, 114-116 (2003).
[CrossRef] [PubMed]

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
[CrossRef]

2002

S. L. Jacques, R. J. Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, Jr. and D. J. Maitland, "Comparative study of polarized light propagation in biological tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

2001

A. D. Kim and M. Moscoso, "Influence of the refractive index on the depolarization of multiply scattered waves," Phys. Rev. E 64, 026612 (2001).
[CrossRef]

2000

1999

1998

E. E. Gorodnichev, A. I. Kuzolov, and D. B. Rozozkin, "Diffusion of circularly polarized light in a disordered medium with large-scale inhomogeneities," JETP Lett. 68, 22-28 (1998).
[CrossRef]

S. P. Schilders, X. S. Gan, and M. Gu, "Resolution improvement in microscopic imaging through turbid media based on differential polarization gating," Appl. Opt. 37, 4300-4302 (1998).
[CrossRef]

S. P. Schilders, X. S. Gan, and M. Gu, "Effect of scatterer size on microscopic imaging through turbid media based on differential polarization gating," Opt. Commun. 157, 238-248 (1998).
[CrossRef]

1997

1994

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

1992

1972

Alfano, R. R.

Arridge, S. R.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, "Optical imaging in medicine: experimental techniques," Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef] [PubMed]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Bissonnette, L. R.

L. R. Bissonnette, "Imaging through fog and rain," Opt. Eng. 31, 1045-1052 (1992).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Bonner, R. F.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, "Optical imaging in medicine: experimental techniques," Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef] [PubMed]

Demos, S. G.

Dunsby, C.

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
[CrossRef]

French, P. M. W.

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
[CrossRef]

Gan, X.

Gan, X. S.

S. P. Schilders, X. S. Gan, and M. Gu, "Effect of scatterer size on microscopic imaging through turbid media based on differential polarization gating," Opt. Commun. 157, 238-248 (1998).
[CrossRef]

S. P. Schilders, X. S. Gan, and M. Gu, "Resolution improvement in microscopic imaging through turbid media based on differential polarization gating," Appl. Opt. 37, 4300-4302 (1998).
[CrossRef]

Gandjbakhche, A. H.

Ghosh, N.

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, "Anomalous behavior of depolarization of light in a turbid medium," Phys. Lett. A 354, 236-242 (2006).
[CrossRef]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
[CrossRef]

N. Ghosh, H. S. Patel, and P. K. Gupta, "Depolarization of light in tissue phantoms--effect of a distribution in the size of scatterers," Opt. Express 11, 2198-2205 (2003).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, "Depolarization of light in tissue phantoms--effect of collection geometry," Opt. Commun. 222, 93-99 (2003).
[CrossRef]

Gorodnichev, E. E.

E. E. Gorodnichev, A. I. Kuzolov, and D. B. Rozozkin, "Diffusion of circularly polarized light in a disordered medium with large-scale inhomogeneities," JETP Lett. 68, 22-28 (1998).
[CrossRef]

Granatstein, V. L.

Gu, M.

Gupta, P. K.

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, "Anomalous behavior of depolarization of light in a turbid medium," Phys. Lett. A 354, 236-242 (2006).
[CrossRef]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
[CrossRef]

N. Ghosh, H. S. Patel, and P. K. Gupta, "Depolarization of light in tissue phantoms--effect of a distribution in the size of scatterers," Opt. Express 11, 2198-2205 (2003).
[CrossRef] [PubMed]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, "Depolarization of light in tissue phantoms--effect of collection geometry," Opt. Commun. 222, 93-99 (2003).
[CrossRef]

Gupta, S.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, "Optical imaging in medicine: experimental techniques," Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef] [PubMed]

Hoffman, D. R.

C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jacques, S. L.

S. L. Jacques, R. J. Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Jain, B.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, "Depolarization of light in tissue phantoms--effect of collection geometry," Opt. Commun. 222, 93-99 (2003).
[CrossRef]

Jaiswal, V.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Kartazayeva, S. A.

Khong, M. P.

Kim, A. D.

A. D. Kim and M. Moscoso, "Influence of the refractive index on the depolarization of multiply scattered waves," Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Kuzolov, A. I.

E. E. Gorodnichev, A. I. Kuzolov, and D. B. Rozozkin, "Diffusion of circularly polarized light in a disordered medium with large-scale inhomogeneities," JETP Lett. 68, 22-28 (1998).
[CrossRef]

Lacoste, D.

Lee, K.

S. L. Jacques, R. J. Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Lenke, R.

Levine, A. M.

Maitland, D. J.

V. Sankaran, J. T. Walsh, Jr. and D. J. Maitland, "Comparative study of polarized light propagation in biological tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

V. Sankaran, K. Schonenberger, J. T. Walsh, Jr., and D. J. Maitland, "Polarization discrimination of coherently propagating light in turbid media," Appl. Opt. 38, 4252-4261 (1999).
[CrossRef]

Majumder, S. K.

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, "Anomalous behavior of depolarization of light in a turbid medium," Phys. Lett. A 354, 236-242 (2006).
[CrossRef]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

Morgan, S. P.

Moscoso, M.

A. D. Kim and M. Moscoso, "Influence of the refractive index on the depolarization of multiply scattered waves," Phys. Rev. E 64, 026612 (2001).
[CrossRef]

Ni, X.

Patel, H. S.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, "Depolarization of light in tissue phantoms--effect of collection geometry," Opt. Commun. 222, 93-99 (2003).
[CrossRef]

N. Ghosh, H. S. Patel, and P. K. Gupta, "Depolarization of light in tissue phantoms--effect of a distribution in the size of scatterers," Opt. Express 11, 2198-2205 (2003).
[CrossRef] [PubMed]

Pradhan, A.

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, "Anomalous behavior of depolarization of light in a turbid medium," Phys. Lett. A 354, 236-242 (2006).
[CrossRef]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Radousky, H. B.

Rhinewine, M.

Rojas-Ochoa, L. F.

Roman, J. R.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Roman, R. J.

S. L. Jacques, R. J. Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

Rozozkin, D. B.

E. E. Gorodnichev, A. I. Kuzolov, and D. B. Rozozkin, "Diffusion of circularly polarized light in a disordered medium with large-scale inhomogeneities," JETP Lett. 68, 22-28 (1998).
[CrossRef]

Sankaran, V.

V. Sankaran, J. T. Walsh, Jr. and D. J. Maitland, "Comparative study of polarized light propagation in biological tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

V. Sankaran, K. Schonenberger, J. T. Walsh, Jr., and D. J. Maitland, "Polarization discrimination of coherently propagating light in turbid media," Appl. Opt. 38, 4252-4261 (1999).
[CrossRef]

Scheffold, F.

Schilders, S. P.

Schmitt, J. M.

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

J. M. Schmitt, A. H. Gandjbakhche, and R. F. Bonner, "Use of polarized light to discriminate short-path photons in a multiply scattering medium," Appl. Opt. 31, 6535-6546 (1992).
[CrossRef] [PubMed]

Schonenberger, K.

Schurtenberger, P.

Singh, B. N.

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, "Depolarization of light in tissue phantoms--effect of collection geometry," Opt. Commun. 222, 93-99 (2003).
[CrossRef]

Singh, R. P.

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Somekh, M. G.

Star, W. M.

A. J. Welch, M. J. C. van Germert, W. M. Star, and B. C. Wilson, "Overview of tissue optics," in Optical Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Germert, eds. (Plenum, l995).

Stockford, I. M.

Sun, C. W.

X. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, "Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments," J. Biomed. Opt. 8, 608-617 (2003).
[CrossRef] [PubMed]

Tyo, J. S.

van Germert, M. J. C.

A. J. Welch, M. J. C. van Germert, W. M. Star, and B. C. Wilson, "Overview of tissue optics," in Optical Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Germert, eds. (Plenum, l995).

Walsh, J. T.

V. Sankaran, J. T. Walsh, Jr. and D. J. Maitland, "Comparative study of polarized light propagation in biological tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

V. Sankaran, K. Schonenberger, J. T. Walsh, Jr., and D. J. Maitland, "Polarization discrimination of coherently propagating light in turbid media," Appl. Opt. 38, 4252-4261 (1999).
[CrossRef]

Wang, L. V.

X. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, "Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments," J. Biomed. Opt. 8, 608-617 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, "Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments," J. Biomed. Opt. 8, 608-617 (2003).
[CrossRef] [PubMed]

Welch, A. J.

A. J. Welch, M. J. C. van Germert, W. M. Star, and B. C. Wilson, "Overview of tissue optics," in Optical Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Germert, eds. (Plenum, l995).

Wilson, B. C.

A. J. Welch, M. J. C. van Germert, W. M. Star, and B. C. Wilson, "Overview of tissue optics," in Optical Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Germert, eds. (Plenum, l995).

Yang, C. C.

X. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, "Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments," J. Biomed. Opt. 8, 608-617 (2003).
[CrossRef] [PubMed]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999).
[CrossRef]

J. Biomed. Opt.

S. L. Jacques, R. J. Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, Jr. and D. J. Maitland, "Comparative study of polarized light propagation in biological tissues," J. Biomed. Opt. 7, 300-306 (2002).
[CrossRef] [PubMed]

X. Wang, L. V. Wang, C. W. Sun, and C. C. Yang, "Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments," J. Biomed. Opt. 8, 608-617 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Phys. D

C. Dunsby and P. M. W. French, "Techniques for depth-resolved imaging through turbid media including coherence-gated imaging," J. Phys. D 36, R207-R227 (2003).
[CrossRef]

JETP Lett.

E. E. Gorodnichev, A. I. Kuzolov, and D. B. Rozozkin, "Diffusion of circularly polarized light in a disordered medium with large-scale inhomogeneities," JETP Lett. 68, 22-28 (1998).
[CrossRef]

Lasers Surg. Med.

S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
[CrossRef] [PubMed]

Opt. Commun.

S. P. Schilders, X. S. Gan, and M. Gu, "Effect of scatterer size on microscopic imaging through turbid media based on differential polarization gating," Opt. Commun. 157, 238-248 (1998).
[CrossRef]

N. Ghosh, P. K. Gupta, H. S. Patel, B. Jain, and B. N. Singh, "Depolarization of light in tissue phantoms--effect of collection geometry," Opt. Commun. 222, 93-99 (2003).
[CrossRef]

Opt. Eng.

L. R. Bissonnette, "Imaging through fog and rain," Opt. Eng. 31, 1045-1052 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

N. Ghosh, P. K. Gupta, A. Pradhan, and S. K. Majumder, "Anomalous behavior of depolarization of light in a turbid medium," Phys. Lett. A 354, 236-242 (2006).
[CrossRef]

Phys. Med. Biol.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, "Optical imaging in medicine: experimental techniques," Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef] [PubMed]

Phys. Rev. E

A. D. Kim and M. Moscoso, "Influence of the refractive index on the depolarization of multiply scattered waves," Phys. Rev. E 64, 026612 (2001).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, "Depolarization of multiply scattered waves by spherical diffusers: influence of size parameter," Phys. Rev. E 49, 1767-1770 (1994).
[CrossRef]

N. Ghosh, A. Pradhan, P. K. Gupta, S. Gupta, V. Jaiswal, and R. P. Singh, "Depolarization of light in a multiply scattering medium: effect of refractive index of scatterer," Phys. Rev. E 70, 066607 (2004).
[CrossRef]

Other

C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

A. J. Welch, M. J. C. van Germert, W. M. Star, and B. C. Wilson, "Overview of tissue optics," in Optical Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Germert, eds. (Plenum, l995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Polarization images of the object embedded inside a scattering medium prepared using aqueous suspension of silica microspheres with mean diameter of 16 μ m ( X = 1.05 , g = 0.18 , n s = 1.37 ) . The incident light was circularly polarized, and the images for (a) the co-polarized ( I CO ) , (b) the cross-polarized ( I CROSS ) and (c) the differential polarization components ( I CO I CROSS ) of the transmitted light are shown. (d) The image of the object recorded under identical experimental conditions with the cuvette filled with water (without any scatterer). (e) The variations of the intensities I CO (dashed curve), I CROSS (dotted curve), and I CO I CROSS (dotted–dashed curve) at individual CCD pixels along the horizontal direction containing the object center in the image. The intensity profile for the image of the object recorded in the absence of any scattering sample is also displayed (solid curve). (f) A comparison of the spatial distribution of the differential polarization intensity of the image for incident linearly ( I I , dotted curve) and circularly ( I CO I CROSS , solid curve) polarized light. The value for optical thickness of this sample was τ = 3.5 .

Fig. 2
Fig. 2

Variations of (a) resolution ( R ) and (b) contrast ( C ) as a function of τ for differential circular polarization gating (circles) and differential linear polarization gating (triangles) obtained from the samples prepared using aqueous suspensions of silica microspheres with mean diameter of 0.16 μ m . The error bars in resolution and contrast have also been shown.

Fig. 3
Fig. 3

Measured angular distribution of degree of linear (dashed curve) and degree of circular polarization (solid curve) of light transmitted through the isotropic scattering sample prepared using 0.16 μ m diameter silica microspheres having a value τ = 3.5 . The spot size of the incident beam was limited to 0.5 mm for these measurements. The inset shows the normalized profiles for angular distribution of degree of circular and linear polarizations.

Fig. 4
Fig. 4

(a) Variations of the intensities I CO (dashed curve), I CROSS (dotted curve), and I CO I CROSS (solid curve) at individual CCD pixels along the horizontal direction containing the object center in the image for the object embedded inside anisotropic scattering samples prepared using 1.08 μ m diameter polystyrene microspheres ( X = 7.13 , g = 0.92 , n s = 1.59 ) . The incident light was circularly polarized. (b) A comparison of the spatial distribution of the differential polarization intensity of the image for incident linearly ( I I , dashed curve) and circularly ( I CO I CROSS , solid curve) polarized light. The value for optical thickness of this sample was τ = 25 . (c) The measured angular distribution of degree of linear (dashed curve) and degree of circular (solid curve) polarization of light transmitted through the sample prepared using 1.08 μ m diameter polystyrene microspheres ( X = 7.13 , g = 0.92 , n s = 1.59 ) . The value for optical thickness of this sample was τ = 25 .

Fig. 5
Fig. 5

(a) Variations of the intensities I CO (dashed curve), I CROSS (dotted curve), and I CO I CROSS (solid curve) at individual CCD pixels along the horizontal direction containing the object center in the image for the object embedded inside an anisotropic scattering sample prepared using aqueous suspensions of silica microspheres with mean diameter of 0.97 μ m ( X = 6.40 , g = 0.94 , n s = 1.37 ) . The incident light was circularly polarized. (b) A comparison of the differential polarization intensity of the image for incident linearly ( I I , dashed curve) and circularly ( I CO I CROSS , solid curve), polarized light. The value for optical thickness of this sample was τ = 4.0 . The variations of (c) resolution ( R ) and (d) contrast ( C ) as a function of τ for differential circular polarization gating (circles) and differential linear polarization gating (triangles) obtained from the samples prepared using aqueous suspensions of silica microspheres with mean diameter of 0.97 μ m . The error bars in resolution and contrast have also been shown.

Fig. 6
Fig. 6

(a) Measured angular distribution of degree of linear (dashed curve) and degree of circular (solid curve) polarizations of light transmitted through the anisotropic scattering sample prepared using 0.97 μ m diameter silica microspheres having a value of τ = 4.0 . The inset shows the normalized profiles for angular distribution of degree of circular and linear polarizations. (b) Theoretically computed [computed using Eq. (4) of Ref. [27]] values of degrees of circular ( P C , circles) polarization after single scattering as a function of scattering angle ( θ ) for both 1.08 μ m diameter polystyrene microspheres ( X = 7.13 , n s = 1.59 , solid symbols) and 0.97 μ m diameter silica microspheres ( X = 6.40 , n s = 1.37 , open symbols) suspension in water ( n medium = 1.33 ) . The inset of the figure shows the angular variation of the degree of linear [ P L ( θ ) , open triangles] and circular [ P C ( θ ) , open circles] polarization for 0.97 silica microspheres suspension in water.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = ( d 1 + d 2 ) 2 .
C = ( I max I min ) ( I max + I min ) .
P L = ( I I ) ( I + I ) ,
P C = ( I CO I CROSS ) ( I CO + I CROSS ) .

Metrics