Abstract

The human eye is affected by large chromatic aberration. This may limit vision and makes it difficult to see fine retinal details in ophthalmoscopy. We designed and built a two-triplet system for correcting the average longitudinal chromatic aberration of the eye while keeping a reasonably wide field of view. Measurements in real eyes were conducted to examine the level and optical quality of the correction. We also performed some tests to evaluate the effect of the corrector on visual performance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. van Meeteren, "Calculations on the optical modulation transfer function of the human eye for white light," Opt. Acta 21, 395-412 (1974).
    [CrossRef]
  2. L. N. Thibos, A. Bradley, and X. Zhang, "Effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
    [CrossRef]
  3. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), Chap. 17, pp. 180-193, and references therein.
    [CrossRef]
  4. L. N. Thibos, "Calculation of the influence of lateral chromatic aberration on image quality across the visual field," J. Opt. Soc. Am. A 4, 1673-1680 (1987).
    [CrossRef] [PubMed]
  5. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
    [CrossRef] [PubMed]
  6. A. Ames, Jr. and C. A. Proctor, "Dioptrics of the eye," J. Opt. Soc. Am. 5, 22-84 (1921).
  7. G. Wald and D. R. Griffin, "The change in refractive power of human eye in dim and bright light," J. Opt. Soc. Am. 37, 321-336 (1947).
    [CrossRef] [PubMed]
  8. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 47, 564-565 (1957).
    [CrossRef] [PubMed]
  9. W. N. Charman and J. Tucker, "Accomodation and color," J. Opt. Soc. Am. 68, 459-470 (1978).
    [CrossRef] [PubMed]
  10. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
    [CrossRef] [PubMed]
  11. S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
    [CrossRef]
  12. P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human eye," Vision Res. 30, 187-206 (1990).
    [CrossRef] [PubMed]
  13. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, "Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes," J. Opt. Soc. Am. A 12, 2348-2357 (1995).
    [CrossRef]
  14. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating the sources of monochromatic aberrations and transverse chromatic aberration in the human eye," Vision Res. 41, 3861-3871 (2001).
    [CrossRef] [PubMed]
  15. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?" J. Opt. Soc. Am. A 5, 2087-2092 (1988).
    [CrossRef] [PubMed]
  16. P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002).
    [CrossRef]
  17. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The chromatic eye: a new model of ocular chromatic aberration," Appl. Opt. 31, 3594-3600 (1992).
    [CrossRef] [PubMed]
  18. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
    [CrossRef]
  19. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
    [CrossRef] [PubMed]
  20. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881-1891 (1999).
    [CrossRef]
  21. A. C. S. van Heel, "Correcting the spherical and chromatic aberrations of the eye," J. Opt. Soc. Am. 36, 237-239 (1946).
    [PubMed]
  22. A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
    [PubMed]
  23. I. Powell, "Lenses for correcting chromatic aberration of the eye," Appl. Opt. 20, 4152-4155 (1981).
    [CrossRef] [PubMed]
  24. X. Zhang, A. Bradley, and L. N. Thibos, "Achromatizing the human eye: the problem of chromatic parallax," J. Opt. Soc. Am. A 8, 686-691 (1991).
    [CrossRef] [PubMed]
  25. J. A. Díaz, M. Irlbauer, and J. A. Martínez, "Diffractive-refractive hybrid doublet to achromatize the human eye," J. Mod. Opt. 51, 2223-2234 (2004).
    [CrossRef]
  26. E. J. Fernández, A. Unterhuber, B. Povazay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006).
    [CrossRef] [PubMed]
  27. X. Zhang, L. N. Thibos, and A. Bradley, "Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye," Optom. Vision Sci. 68, 456-458 (1991).
    [CrossRef]
  28. C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, "Twin-image holography with spectrally broad light," J. Org. Chem. 11, 149-152 (1980).
  29. C. G. Wynne, "Extending the bandwidth of speckle interferometry," Opt. Commun. 28, 21-25 (1979).
    [CrossRef]
  30. The polychromatic RMS is a parameter provided by ZEMAX to quantify the extension of the polychromatic point-spread function. In short, it is the RMS of the positions of the impacts on the image plane of a bundle of rays with different wavelengths covering the pupil of the system. For a more detailed description of the calculation procedure, see ZEMAX Manual (zemax.com).
  31. S. Manzanera, P. Piers, and P. Artal, "Measurement and correction of the eye's chromatic aberration," Invest. Opthalmol. Visual Sci. 46, E-Abstract 2008 (2005).
  32. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
    [CrossRef]
  33. F. W. Campbell and R. W. Gubisch, "The effect of chromatic aberration on visual acuity," J. Physiol. (London) 192, 345-358 (1967).
  34. L. A. Riggs, "Visual acuity," in Vision and Visual Perception, C.H.Graham, ed. (Wiley, 1965), pp. 321-349.
  35. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural adaptation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
  36. P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sánchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

S. Manzanera, P. Piers, and P. Artal, "Measurement and correction of the eye's chromatic aberration," Invest. Opthalmol. Visual Sci. 46, E-Abstract 2008 (2005).

2004 (2)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural adaptation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).

J. A. Díaz, M. Irlbauer, and J. A. Martínez, "Diffractive-refractive hybrid doublet to achromatize the human eye," J. Mod. Opt. 51, 2223-2234 (2004).
[CrossRef]

2003 (1)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
[CrossRef]

2002 (2)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

2001 (1)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating the sources of monochromatic aberrations and transverse chromatic aberration in the human eye," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881-1891 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

1995 (1)

1993 (1)

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sánchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

1992 (1)

1991 (3)

L. N. Thibos, A. Bradley, and X. Zhang, "Effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

X. Zhang, A. Bradley, and L. N. Thibos, "Achromatizing the human eye: the problem of chromatic parallax," J. Opt. Soc. Am. A 8, 686-691 (1991).
[CrossRef] [PubMed]

X. Zhang, L. N. Thibos, and A. Bradley, "Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye," Optom. Vision Sci. 68, 456-458 (1991).
[CrossRef]

1990 (2)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human eye," Vision Res. 30, 187-206 (1990).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

1982 (1)

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

1981 (1)

1980 (1)

C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, "Twin-image holography with spectrally broad light," J. Org. Chem. 11, 149-152 (1980).

1979 (1)

C. G. Wynne, "Extending the bandwidth of speckle interferometry," Opt. Commun. 28, 21-25 (1979).
[CrossRef]

1978 (1)

1974 (1)

A. van Meeteren, "Calculations on the optical modulation transfer function of the human eye for white light," Opt. Acta 21, 395-412 (1974).
[CrossRef]

1967 (1)

F. W. Campbell and R. W. Gubisch, "The effect of chromatic aberration on visual acuity," J. Physiol. (London) 192, 345-358 (1967).

1957 (1)

1947 (1)

1946 (1)

1921 (1)

Aggarwala, K. R.

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sánchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Ames, A.

Artal, P.

Atchison, D. A.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), Chap. 17, pp. 180-193, and references therein.
[CrossRef]

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating the sources of monochromatic aberrations and transverse chromatic aberration in the human eye," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

Baranne, A.

C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, "Twin-image holography with spectrally broad light," J. Org. Chem. 11, 149-152 (1980).

Bedford, R. E.

Berrio, E.

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The chromatic eye: a new model of ocular chromatic aberration," Appl. Opt. 31, 3594-3600 (1992).
[CrossRef] [PubMed]

X. Zhang, A. Bradley, and L. N. Thibos, "Achromatizing the human eye: the problem of chromatic parallax," J. Opt. Soc. Am. A 8, 686-691 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Zhang, "Effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

X. Zhang, L. N. Thibos, and A. Bradley, "Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye," Optom. Vision Sci. 68, 456-458 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?" J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

Brun, R.

C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, "Twin-image holography with spectrally broad light," J. Org. Chem. 11, 149-152 (1980).

Burns, S. A.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating the sources of monochromatic aberrations and transverse chromatic aberration in the human eye," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Campbell, F. W.

F. W. Campbell and R. W. Gubisch, "The effect of chromatic aberration on visual acuity," J. Physiol. (London) 192, 345-358 (1967).

Campbell, M. C. W.

P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human eye," Vision Res. 30, 187-206 (1990).
[CrossRef] [PubMed]

Charman, W. N.

Chen, L.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural adaptation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).

Chisholm, W.

Díaz, J. A.

J. A. Díaz, M. Irlbauer, and J. A. Martínez, "Diffractive-refractive hybrid doublet to achromatize the human eye," J. Mod. Opt. 51, 2223-2234 (2004).
[CrossRef]

Diaz-Santana, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
[CrossRef]

Drexler, W.

Escudero-Sanz, I.

Fernández, E. J.

Goelz, S.

Griffin, D. R.

Gubisch, R. W.

F. W. Campbell and R. W. Gubisch, "The effect of chromatic aberration on visual acuity," J. Physiol. (London) 192, 345-358 (1967).

Guirao, A.

Hermann, B.

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?" J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

Irlbauer, M.

J. A. Díaz, M. Irlbauer, and J. A. Martínez, "Diffractive-refractive hybrid doublet to achromatize the human eye," J. Mod. Opt. 51, 2223-2234 (2004).
[CrossRef]

Katz, M.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Kruger, P. B.

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sánchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Lara-Saucedo, D.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
[CrossRef]

Lewis, A. L.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Lidkea, B.

Llorente, L.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
[CrossRef]

Manzanera, S.

S. Manzanera, P. Piers, and P. Artal, "Measurement and correction of the eye's chromatic aberration," Invest. Opthalmol. Visual Sci. 46, E-Abstract 2008 (2005).

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural adaptation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).

Marcos, S.

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
[CrossRef]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating the sources of monochromatic aberrations and transverse chromatic aberration in the human eye," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Martin, F.

C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, "Twin-image holography with spectrally broad light," J. Org. Chem. 11, 149-152 (1980).

Martínez, J. A.

J. A. Díaz, M. Irlbauer, and J. A. Martínez, "Diffractive-refractive hybrid doublet to achromatize the human eye," J. Mod. Opt. 51, 2223-2234 (2004).
[CrossRef]

Mathews, S.

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sánchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

McLellan, J. S.

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating the sources of monochromatic aberrations and transverse chromatic aberration in the human eye," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1881-1891 (1999).
[CrossRef]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

Oehrlein, C.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Piers, P.

S. Manzanera, P. Piers, and P. Artal, "Measurement and correction of the eye's chromatic aberration," Invest. Opthalmol. Visual Sci. 46, E-Abstract 2008 (2005).

P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

Povazay, B.

Powell, I.

Prieto, P. M.

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating the sources of monochromatic aberrations and transverse chromatic aberration in the human eye," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

Proctor, C. A.

Riggs, L. A.

L. A. Riggs, "Visual acuity," in Vision and Visual Perception, C.H.Graham, ed. (Wiley, 1965), pp. 321-349.

Roddier, C.

C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, "Twin-image holography with spectrally broad light," J. Org. Chem. 11, 149-152 (1980).

Roddier, F.

C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, "Twin-image holography with spectrally broad light," J. Org. Chem. 11, 149-152 (1980).

Rynders, M.

Sánchez, N.

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sánchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

Simonet, P.

P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human eye," Vision Res. 30, 187-206 (1990).
[CrossRef] [PubMed]

Singer, B.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural adaptation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).

Smith, G.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), Chap. 17, pp. 180-193, and references therein.
[CrossRef]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?" J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

Thibos, L. N.

Tucker, J.

Unterhuber, A.

van Heel, A. C. S.

van Meeteren, A.

A. van Meeteren, "Calculations on the optical modulation transfer function of the human eye for white light," Opt. Acta 21, 395-412 (1974).
[CrossRef]

Vargas-Martín, F.

Wald, G.

Williams, D. R.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural adaptation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).

Wynne, C. G.

C. G. Wynne, "Extending the bandwidth of speckle interferometry," Opt. Commun. 28, 21-25 (1979).
[CrossRef]

Wyszecki, G.

Ye, M.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The chromatic eye: a new model of ocular chromatic aberration," Appl. Opt. 31, 3594-3600 (1992).
[CrossRef] [PubMed]

X. Zhang, A. Bradley, and L. N. Thibos, "Achromatizing the human eye: the problem of chromatic parallax," J. Opt. Soc. Am. A 8, 686-691 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Zhang, "Effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

X. Zhang, L. N. Thibos, and A. Bradley, "Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye," Optom. Vision Sci. 68, 456-458 (1991).
[CrossRef]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

Zhang, X. X.

Am. J. Optom. Physiol. Opt. (1)

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Appl. Opt. (2)

Invest. Opthalmol. Visual Sci. (1)

S. Manzanera, P. Piers, and P. Artal, "Measurement and correction of the eye's chromatic aberration," Invest. Opthalmol. Visual Sci. 46, E-Abstract 2008 (2005).

J. Mod. Opt. (1)

J. A. Díaz, M. Irlbauer, and J. A. Martínez, "Diffractive-refractive hybrid doublet to achromatize the human eye," J. Mod. Opt. 51, 2223-2234 (2004).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (7)

J. Org. Chem. (1)

C. Roddier, F. Roddier, F. Martin, A. Baranne, and R. Brun, "Twin-image holography with spectrally broad light," J. Org. Chem. 11, 149-152 (1980).

J. Physiol. (London) (1)

F. W. Campbell and R. W. Gubisch, "The effect of chromatic aberration on visual acuity," J. Physiol. (London) 192, 345-358 (1967).

J. Vision (1)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural adaptation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).

Nature (1)

J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, "Imperfect optics may be the eye's defence against chromatic blur," Nature 417, 174-176 (2002).
[CrossRef] [PubMed]

Opt. Acta (1)

A. van Meeteren, "Calculations on the optical modulation transfer function of the human eye for white light," Opt. Acta 21, 395-412 (1974).
[CrossRef]

Opt. Commun. (1)

C. G. Wynne, "Extending the bandwidth of speckle interferometry," Opt. Commun. 28, 21-25 (1979).
[CrossRef]

Opt. Express (2)

Optom. Vision Sci. (3)

L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Zhang, "Effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

X. Zhang, L. N. Thibos, and A. Bradley, "Relation between the chromatic difference of refraction and the chromatic difference of magnification for the reduced eye," Optom. Vision Sci. 68, 456-458 (1991).
[CrossRef]

Vision Res. (5)

P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sánchez, "Chromatic aberration and ocular focus: Fincham revisited," Vision Res. 33, 1397-1411 (1993).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, "Theory and measurement of ocular chromatic aberration," Vision Res. 30, 33-49 (1990).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriuso, and R. Navarro, "A new approach to the study of ocular chromatic aberrations," Vision Res. 39, 4309-4323 (1999).
[CrossRef]

P. Simonet and M. C. W. Campbell, "The optical transverse chromatic aberration on the fovea of the human eye," Vision Res. 30, 187-206 (1990).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating the sources of monochromatic aberrations and transverse chromatic aberration in the human eye," Vision Res. 41, 3861-3871 (2001).
[CrossRef] [PubMed]

Other (3)

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), Chap. 17, pp. 180-193, and references therein.
[CrossRef]

The polychromatic RMS is a parameter provided by ZEMAX to quantify the extension of the polychromatic point-spread function. In short, it is the RMS of the positions of the impacts on the image plane of a bundle of rays with different wavelengths covering the pupil of the system. For a more detailed description of the calculation procedure, see ZEMAX Manual (zemax.com).

L. A. Riggs, "Visual acuity," in Vision and Visual Perception, C.H.Graham, ed. (Wiley, 1965), pp. 321-349.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the corrector and the wide-angle eye model used for the optimization process.

Fig. 2
Fig. 2

LCA for the naked wide-angle eye model (thin solid curve) and theoretical residual LCA for the coupling of the wide-angle eye and the two-triplet achromatizing system (thick solid curve). For comparison purposes, we show the theoretical residual LCA for the coupling of the wide-angle eye with Powell’s achromatizing lens (dotted curve) for the same eye relief ( 17 mm ) . In all cases, the reference wavelength was 555 nm .

Fig. 3
Fig. 3

Theoretical polychromatic RMS[30] as a function of the angle of incidence for the combination of the wide-angle schematic eye and different LCA correctors: Bedford–Wyszecki’s design (dotted curve), Powell’s corrector (dashed curve), or the design presented here (thick solid curve). The pupil size for the calculation was 6 mm , and the reference wavelength was 555 nm . The eye relief for the previous corrector designs was also 17 mm . For comparison purposes, the polychromatic RMS as a function of the angle of incidence for the naked wide-angle eye model has been plotted (thin solid curve).

Fig. 4
Fig. 4

Theoretical effect of 1 mm of lateral decentration on the polychromatic RMS for the combination of the wide-angle schematic eye and different LCA correctors: Bedford–Wyszecki’s design (dotted curve), Powell’s corrector (dashed curve), or the design presented here (solid curve). Vignetting effects can be seen for Powell’s corrector below ± 6 ° . The origin for the incidence angle is the corrector optical axis.

Fig. 5
Fig. 5

Theoretical effect of 1° of tilt on the polychromatic RMS for the combination of the wide-angle schematic eye and different LCA correctors: Bedford–Wyszecki’s design (dotted curve), Powell’s corrector (dashed curve), or the design presented here (solid curve). The origin for the incidence angle is the corrector optical axis.

Fig. 6
Fig. 6

Experimental apparatus for measuring the monochromatic aberrations introduced by the device for different wavelengths. L1, L2, L3, L4, L5, L6, L7, and L8, achromatic doublets; M1, M-a, M4, M5, M6, M7, and M8, mirrors; FI, filter holder for the 10 nm bandwidth interference filters; P1, 1 mm stop; BS, beam splitter; ML, microlens array.

Fig. 7
Fig. 7

Experimental apparatus for measuring the ocular LCA and performing VA tests with and without the corrector. The elements removed from the apparatus in Fig. 6 are presented in light gray (blue online). Other differences are as follows: Mirrors M1 and M-a illuminated the target for LCA measurements; a monitor for VA tests was included; tilting of mirror M-b allowed switching between tasks. Additionally, mirrors M6 and M7 are mounted on a motorized stage that is computer controlled by the subject to adjust the best focus (Badal scheme).

Fig. 8
Fig. 8

Zernike coefficients (OSA standard order) of the corrector aberrations over a 5.5 mm pupil for a series of wavelengths. The defocus term is presented separately due to the different scale. The last column represents the RMS of the corrector calculated from the set of Zernike coefficients, excluding the defocus. The average standard deviation for individual coefficients (including defocus) was 0.01 μ m and for the total RMS was 0.02 μ m .

Fig. 9
Fig. 9

Phase maps of the corrector aberrations excluding defocus, wrapped between 0 (black) and 2 π radians (white) for the five selected wavelengths. In all cases the peak-to-valley values can be seen to be less than or around 1 λ.

Fig. 10
Fig. 10

Longitudinal chromatic aberration for the naked eye (circles) and after LCA correction with the two-triplet system (triangles) for three subjects.

Fig. 11
Fig. 11

Monochromatic (green light) and polychromatic (white light) visual acuity estimates for two subjects, SM ( 3 D ) and YB ( 3.5 D ) , with the eye naked and wearing the LCA corrector. The error bars are the standard deviation.

Tables (2)

Tables Icon

Table 1 Parameters of the Final Corrector Design

Tables Icon

Table 2 Decimal Visual Acuity Values for SM and YB, without and with the Corrector, for Monochromatic and Polychromatic Light a

Metrics