Abstract

When cat V1/V2 cells are adapted to contrast at their optimal orientation, a reduction in gain and/or a shift in the contrast response function is found. We investigated how these factors combine at the population level to affect the accuracy for detecting variations in contrast. Using the contrast response function parameters from a physiologically measured population, we model the population accuracy (using Fisher information) for contrast discrimination. Adaptation at 16%, 32%, and 100% contrast causes a shift in peak accuracy. Despite an overall drop in firing rate over the whole population, accuracy is enhanced around the adapted contrast and at higher contrasts, leading to greater efficiency of contrast coding at these levels. The estimated contrast discrimination threshold curve becomes elevated and shifted toward higher contrasts after adaptation, as has been found previously in human psychophysical experiments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Maffei, A. Fiorentini, and S. Bisti, "Neural correlate of perceptual adaptation to gratings," Science 182, 1036-1038 (1973).
    [CrossRef] [PubMed]
  2. R. G. Vautin and M. A. Berkley, "Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects," J. Neurophysiol. 40, 1051-1065 (1977).
    [PubMed]
  3. J. A. Movshon and P. Lennie, "Pattern-selective adaptation in visual cortical neurones," Nature 278, 850-852 (1979).
    [CrossRef] [PubMed]
  4. A. F. Dean, "Adaptation-induced alternation of the relation between response amplitude and contrast in cat striate cortical neurones," Vision Res. 23, 249-256 (1983).
    [CrossRef] [PubMed]
  5. I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat visual cortex," Nature 298, 266-268 (1982).
    [CrossRef] [PubMed]
  6. I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat's visual system," J. Neurophysiol. 54, 651-667 (1985).
    [PubMed]
  7. G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
    [CrossRef] [PubMed]
  8. M. Carandini, "Visual cortex: fatigue and adaptation," Curr. Biol. 10, R605-R607 (2000).
    [CrossRef] [PubMed]
  9. M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, "Natural image statistics and divisive normalization," in Probabilistic Models of the Brain, R.P. N.Rao, B.A.Olshausen, and M.S.Lewicki, eds. (MIT, 2002), pp. 203-222.
  10. N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006).
    [CrossRef]
  11. B. R. Payne and A. Peters, The Cat Primary Visual Cortex (Academic, 2002).
  12. S. G. Solomon, J. W. Pearce, N. T. Dhruv, and P. Lennie, "Profound contrast adaptation early in the visual pathway," Neuron 42, 155-162 (2004).
    [CrossRef] [PubMed]
  13. M. Chirimuuta, P. L. Clatworthy, and D. J. Tolhurst, "Coding of the contrast in natural images by visual cortex (V1) neurons: a Bayesian approach," J. Opt. Soc. Am. A 20, 1253-1260 (2003).
    [CrossRef]
  14. P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT, 2001).
  15. N. S. Harper and D. McAlpine, "Optimal neural population coding of an auditory spatial cue," Nature 430, 682-686 (2004).
    [CrossRef] [PubMed]
  16. I. Dean, N. S. Harper, and D. McAlpine, "Neural population coding of sound level adapts to stimulus statistics," Nat. Neurosci. 8, 1684-1689 (2005).
    [CrossRef] [PubMed]
  17. D. I. A. Macleod and T. von der Twer, "Optimal opponent colours," in Colour Perception: Mind and the Physical World, R.Mausfeld and D.Heyer, eds. (Oxford U. Press, 2003), pp. 155-184.
  18. D. A. Butts and M. S. Goldman, "Tuning curves, neuronal variability and sensory coding," PLOS Comput. Biol. 4, 1-8 (2006).
  19. N. Brunel and J.-P. Nadal, "Mutual information, Fisher information, and population coding," Neural Comput. 10, 1731-1757 (1998).
    [CrossRef] [PubMed]
  20. A. Gottschalk, "Derivation of the visual contrast response function by maximizing information rate," Neural Comput. 14, 527-542 (2002).
    [CrossRef] [PubMed]
  21. H. B. Barlow, D. I. A. Macleod, and A. Van Meeteren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
    [CrossRef] [PubMed]
  22. J. J. Kulikowski and A. Gorea, "Complete adaptation to patterned stimuli: a necessary and sufficient condition for Weber's law for contrast," Vision Res. 18, 1223-1227 (1978).
    [CrossRef] [PubMed]
  23. G. E. Legge and J. M. Foley, "Contrast masking in human vision," J. Opt. Soc. Am. 70, 1458-1469 (1980).
    [CrossRef] [PubMed]
  24. M. W. Greenlee and F. Heitger, "Functional role of contrast adaptation," Vision Res. 28, 791-797 (1988).
    [CrossRef] [PubMed]
  25. J. Ross, H. D. Speed, and M. J. Morga, "The effects of adaptation and masking on incremental thresholds for contrast," Vision Res. 33, 2051-2056 (1993).
    [CrossRef] [PubMed]
  26. J. M. Foley and C. Chen, "Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model," Vision Res. 37, 2779-2788 (1997).
    [CrossRef] [PubMed]
  27. G. Abbonizio, K. Langley, and C. W. G. Clifford, "Contrast adaptation may enhance contrast discrimination," Spatial Vis. 16, 45-58 (2002).
    [CrossRef]
  28. D. G. Albrecht and D. B. Hamilton, "Striate cortex of monkey and cat: contrast response function," J. Neurosci. 48, 217-237 (1982).
  29. M. C. Teich, "Fractal character of the auditory neural spike train," IEEE Trans. Biomed. Eng. 36, 150-160 (1989).
    [CrossRef] [PubMed]
  30. D. J. Tolhurst, J. A. Movshon, and A. F. Dean, "The statistical reliability of signals in single neurons in cat and monkey visual cortex," Vision Res. 23, 775-785 (1983).
    [CrossRef] [PubMed]
  31. D. J. Tolhurst, J. A. Movshon, and I. D. Thompson, "The dependence of response amplitude and variance of cat visual cortical-neurons on stimulus contrast," Exp. Brain Res. 41, 414-419 (1981).
    [CrossRef] [PubMed]
  32. W. S. Geisler and D. G. Albrecht, "Visual cortex neurons in monkeys and cats: detection, discrimination, and identification," Visual Neurosci. 14, 897-919 (1997).
    [CrossRef]
  33. P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
    [CrossRef] [PubMed]
  34. D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling the woods," Phys. Rev. Lett. 74, 814-818 (1994).
    [CrossRef]
  35. T. Q. Vu, S. T. McCarthy, and G. W. Owen, "Linear transduction of natural stimuli by dark adapted rods of the salamander, Ambystoma tirgrinum," J. Physiol. (London) 505, 193-204 (1997).
    [CrossRef]
  36. N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
    [CrossRef]
  37. Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
    [CrossRef] [PubMed]
  38. R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
    [CrossRef] [PubMed]
  39. S. B. Laughlin, R. R. Ruyter, and J. C. Anderson, "The metabolic cost of neural information," Nat. Neurosci. 1, 36-41 (1998).
    [CrossRef]
  40. P. Lennie, "The cost of cortical computation," Curr. Biol. 13, 293-497 (2003).
    [CrossRef]
  41. J. Nachmias and R. V. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
    [CrossRef] [PubMed]
  42. A. A. Stocker and E. P. Simoncelli, "Sensory adaptation within a Bayesian framework for perception," in Advances in Neural Information Processing Systems, Y.Weiss, B.Schoelkopf, and J.Platt, eds. (MIT, 2006), pp. 1291-1298.

2006 (2)

N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006).
[CrossRef]

D. A. Butts and M. S. Goldman, "Tuning curves, neuronal variability and sensory coding," PLOS Comput. Biol. 4, 1-8 (2006).

2005 (1)

I. Dean, N. S. Harper, and D. McAlpine, "Neural population coding of sound level adapts to stimulus statistics," Nat. Neurosci. 8, 1684-1689 (2005).
[CrossRef] [PubMed]

2004 (2)

S. G. Solomon, J. W. Pearce, N. T. Dhruv, and P. Lennie, "Profound contrast adaptation early in the visual pathway," Neuron 42, 155-162 (2004).
[CrossRef] [PubMed]

N. S. Harper and D. McAlpine, "Optimal neural population coding of an auditory spatial cue," Nature 430, 682-686 (2004).
[CrossRef] [PubMed]

2003 (4)

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
[CrossRef] [PubMed]

P. Lennie, "The cost of cortical computation," Curr. Biol. 13, 293-497 (2003).
[CrossRef]

M. Chirimuuta, P. L. Clatworthy, and D. J. Tolhurst, "Coding of the contrast in natural images by visual cortex (V1) neurons: a Bayesian approach," J. Opt. Soc. Am. A 20, 1253-1260 (2003).
[CrossRef]

2002 (2)

G. Abbonizio, K. Langley, and C. W. G. Clifford, "Contrast adaptation may enhance contrast discrimination," Spatial Vis. 16, 45-58 (2002).
[CrossRef]

A. Gottschalk, "Derivation of the visual contrast response function by maximizing information rate," Neural Comput. 14, 527-542 (2002).
[CrossRef] [PubMed]

2000 (3)

M. Carandini, "Visual cortex: fatigue and adaptation," Curr. Biol. 10, R605-R607 (2000).
[CrossRef] [PubMed]

N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
[CrossRef]

Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
[CrossRef] [PubMed]

1998 (2)

S. B. Laughlin, R. R. Ruyter, and J. C. Anderson, "The metabolic cost of neural information," Nat. Neurosci. 1, 36-41 (1998).
[CrossRef]

N. Brunel and J.-P. Nadal, "Mutual information, Fisher information, and population coding," Neural Comput. 10, 1731-1757 (1998).
[CrossRef] [PubMed]

1997 (3)

J. M. Foley and C. Chen, "Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model," Vision Res. 37, 2779-2788 (1997).
[CrossRef] [PubMed]

W. S. Geisler and D. G. Albrecht, "Visual cortex neurons in monkeys and cats: detection, discrimination, and identification," Visual Neurosci. 14, 897-919 (1997).
[CrossRef]

T. Q. Vu, S. T. McCarthy, and G. W. Owen, "Linear transduction of natural stimuli by dark adapted rods of the salamander, Ambystoma tirgrinum," J. Physiol. (London) 505, 193-204 (1997).
[CrossRef]

1994 (1)

D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling the woods," Phys. Rev. Lett. 74, 814-818 (1994).
[CrossRef]

1993 (1)

J. Ross, H. D. Speed, and M. J. Morga, "The effects of adaptation and masking on incremental thresholds for contrast," Vision Res. 33, 2051-2056 (1993).
[CrossRef] [PubMed]

1989 (2)

M. C. Teich, "Fractal character of the auditory neural spike train," IEEE Trans. Biomed. Eng. 36, 150-160 (1989).
[CrossRef] [PubMed]

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef] [PubMed]

1988 (1)

M. W. Greenlee and F. Heitger, "Functional role of contrast adaptation," Vision Res. 28, 791-797 (1988).
[CrossRef] [PubMed]

1985 (1)

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat's visual system," J. Neurophysiol. 54, 651-667 (1985).
[PubMed]

1983 (2)

A. F. Dean, "Adaptation-induced alternation of the relation between response amplitude and contrast in cat striate cortical neurones," Vision Res. 23, 249-256 (1983).
[CrossRef] [PubMed]

D. J. Tolhurst, J. A. Movshon, and A. F. Dean, "The statistical reliability of signals in single neurons in cat and monkey visual cortex," Vision Res. 23, 775-785 (1983).
[CrossRef] [PubMed]

1982 (2)

D. G. Albrecht and D. B. Hamilton, "Striate cortex of monkey and cat: contrast response function," J. Neurosci. 48, 217-237 (1982).

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat visual cortex," Nature 298, 266-268 (1982).
[CrossRef] [PubMed]

1981 (1)

D. J. Tolhurst, J. A. Movshon, and I. D. Thompson, "The dependence of response amplitude and variance of cat visual cortical-neurons on stimulus contrast," Exp. Brain Res. 41, 414-419 (1981).
[CrossRef] [PubMed]

1980 (1)

1979 (1)

J. A. Movshon and P. Lennie, "Pattern-selective adaptation in visual cortical neurones," Nature 278, 850-852 (1979).
[CrossRef] [PubMed]

1978 (1)

J. J. Kulikowski and A. Gorea, "Complete adaptation to patterned stimuli: a necessary and sufficient condition for Weber's law for contrast," Vision Res. 18, 1223-1227 (1978).
[CrossRef] [PubMed]

1977 (1)

R. G. Vautin and M. A. Berkley, "Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects," J. Neurophysiol. 40, 1051-1065 (1977).
[PubMed]

1976 (1)

H. B. Barlow, D. I. A. Macleod, and A. Van Meeteren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

1974 (1)

J. Nachmias and R. V. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

1973 (1)

L. Maffei, A. Fiorentini, and S. Bisti, "Neural correlate of perceptual adaptation to gratings," Science 182, 1036-1038 (1973).
[CrossRef] [PubMed]

Abbonizio, G.

G. Abbonizio, K. Langley, and C. W. G. Clifford, "Contrast adaptation may enhance contrast discrimination," Spatial Vis. 16, 45-58 (2002).
[CrossRef]

Abbott, L. F.

P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT, 2001).

Albrecht, D. G.

W. S. Geisler and D. G. Albrecht, "Visual cortex neurons in monkeys and cats: detection, discrimination, and identification," Visual Neurosci. 14, 897-919 (1997).
[CrossRef]

D. G. Albrecht and D. B. Hamilton, "Striate cortex of monkey and cat: contrast response function," J. Neurosci. 48, 217-237 (1982).

Anderson, J. C.

S. B. Laughlin, R. R. Ruyter, and J. C. Anderson, "The metabolic cost of neural information," Nat. Neurosci. 1, 36-41 (1998).
[CrossRef]

Balboa, R. M.

R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
[CrossRef] [PubMed]

Barlow, H. B.

H. B. Barlow, D. I. A. Macleod, and A. Van Meeteren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

Berkley, M. A.

R. G. Vautin and M. A. Berkley, "Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects," J. Neurophysiol. 40, 1051-1065 (1977).
[PubMed]

Bialek, W.

D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling the woods," Phys. Rev. Lett. 74, 814-818 (1994).
[CrossRef]

Bisti, S.

L. Maffei, A. Fiorentini, and S. Bisti, "Neural correlate of perceptual adaptation to gratings," Science 182, 1036-1038 (1973).
[CrossRef] [PubMed]

Brady, N.

N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
[CrossRef]

Brunel, N.

N. Brunel and J.-P. Nadal, "Mutual information, Fisher information, and population coding," Neural Comput. 10, 1731-1757 (1998).
[CrossRef] [PubMed]

Butts, D. A.

D. A. Butts and M. S. Goldman, "Tuning curves, neuronal variability and sensory coding," PLOS Comput. Biol. 4, 1-8 (2006).

Carandini, M.

M. Carandini, "Visual cortex: fatigue and adaptation," Curr. Biol. 10, R605-R607 (2000).
[CrossRef] [PubMed]

Chen, C.

J. M. Foley and C. Chen, "Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model," Vision Res. 37, 2779-2788 (1997).
[CrossRef] [PubMed]

Chirimuuta, M.

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

M. Chirimuuta, P. L. Clatworthy, and D. J. Tolhurst, "Coding of the contrast in natural images by visual cortex (V1) neurons: a Bayesian approach," J. Opt. Soc. Am. A 20, 1253-1260 (2003).
[CrossRef]

Clatworthy, P. L.

M. Chirimuuta, P. L. Clatworthy, and D. J. Tolhurst, "Coding of the contrast in natural images by visual cortex (V1) neurons: a Bayesian approach," J. Opt. Soc. Am. A 20, 1253-1260 (2003).
[CrossRef]

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Clifford, C. W. G.

N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006).
[CrossRef]

G. Abbonizio, K. Langley, and C. W. G. Clifford, "Contrast adaptation may enhance contrast discrimination," Spatial Vis. 16, 45-58 (2002).
[CrossRef]

Crowder, N. A.

N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006).
[CrossRef]

Dayan, P.

P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT, 2001).

Dean, A. F.

A. F. Dean, "Adaptation-induced alternation of the relation between response amplitude and contrast in cat striate cortical neurones," Vision Res. 23, 249-256 (1983).
[CrossRef] [PubMed]

D. J. Tolhurst, J. A. Movshon, and A. F. Dean, "The statistical reliability of signals in single neurons in cat and monkey visual cortex," Vision Res. 23, 775-785 (1983).
[CrossRef] [PubMed]

Dean, I.

I. Dean, N. S. Harper, and D. McAlpine, "Neural population coding of sound level adapts to stimulus statistics," Nat. Neurosci. 8, 1684-1689 (2005).
[CrossRef] [PubMed]

DePriest, D.

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef] [PubMed]

Dhruv, N. T.

S. G. Solomon, J. W. Pearce, N. T. Dhruv, and P. Lennie, "Profound contrast adaptation early in the visual pathway," Neuron 42, 155-162 (2004).
[CrossRef] [PubMed]

Field, D. J.

N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
[CrossRef]

Fiorentini, A.

L. Maffei, A. Fiorentini, and S. Bisti, "Neural correlate of perceptual adaptation to gratings," Science 182, 1036-1038 (1973).
[CrossRef] [PubMed]

Foley, J. M.

J. M. Foley and C. Chen, "Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model," Vision Res. 37, 2779-2788 (1997).
[CrossRef] [PubMed]

G. E. Legge and J. M. Foley, "Contrast masking in human vision," J. Opt. Soc. Am. 70, 1458-1469 (1980).
[CrossRef] [PubMed]

Freeman, R. D.

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat's visual system," J. Neurophysiol. 54, 651-667 (1985).
[PubMed]

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat visual cortex," Nature 298, 266-268 (1982).
[CrossRef] [PubMed]

Geisler, W. S.

W. S. Geisler and D. G. Albrecht, "Visual cortex neurons in monkeys and cats: detection, discrimination, and identification," Visual Neurosci. 14, 897-919 (1997).
[CrossRef]

Goldman, M. S.

D. A. Butts and M. S. Goldman, "Tuning curves, neuronal variability and sensory coding," PLOS Comput. Biol. 4, 1-8 (2006).

Gorea, A.

J. J. Kulikowski and A. Gorea, "Complete adaptation to patterned stimuli: a necessary and sufficient condition for Weber's law for contrast," Vision Res. 18, 1223-1227 (1978).
[CrossRef] [PubMed]

Gottschalk, A.

A. Gottschalk, "Derivation of the visual contrast response function by maximizing information rate," Neural Comput. 14, 527-542 (2002).
[CrossRef] [PubMed]

Greenlee, M. W.

M. W. Greenlee and F. Heitger, "Functional role of contrast adaptation," Vision Res. 28, 791-797 (1988).
[CrossRef] [PubMed]

Grzywacz, N. M.

R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
[CrossRef] [PubMed]

Hamilton, D. B.

D. G. Albrecht and D. B. Hamilton, "Striate cortex of monkey and cat: contrast response function," J. Neurosci. 48, 217-237 (1982).

Harper, N. S.

I. Dean, N. S. Harper, and D. McAlpine, "Neural population coding of sound level adapts to stimulus statistics," Nat. Neurosci. 8, 1684-1689 (2005).
[CrossRef] [PubMed]

N. S. Harper and D. McAlpine, "Optimal neural population coding of an auditory spatial cue," Nature 430, 682-686 (2004).
[CrossRef] [PubMed]

Heitger, F.

M. W. Greenlee and F. Heitger, "Functional role of contrast adaptation," Vision Res. 28, 791-797 (1988).
[CrossRef] [PubMed]

Hietanen, M. A.

N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006).
[CrossRef]

Ibbotson, M. R.

N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006).
[CrossRef]

Kulikowski, J. J.

J. J. Kulikowski and A. Gorea, "Complete adaptation to patterned stimuli: a necessary and sufficient condition for Weber's law for contrast," Vision Res. 18, 1223-1227 (1978).
[CrossRef] [PubMed]

Langley, K.

G. Abbonizio, K. Langley, and C. W. G. Clifford, "Contrast adaptation may enhance contrast discrimination," Spatial Vis. 16, 45-58 (2002).
[CrossRef]

Laughlin, S. B.

S. B. Laughlin, R. R. Ruyter, and J. C. Anderson, "The metabolic cost of neural information," Nat. Neurosci. 1, 36-41 (1998).
[CrossRef]

Lauritzen, J. S.

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Legge, G. E.

Lennie, P.

S. G. Solomon, J. W. Pearce, N. T. Dhruv, and P. Lennie, "Profound contrast adaptation early in the visual pathway," Neuron 42, 155-162 (2004).
[CrossRef] [PubMed]

P. Lennie, "The cost of cortical computation," Curr. Biol. 13, 293-497 (2003).
[CrossRef]

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef] [PubMed]

J. A. Movshon and P. Lennie, "Pattern-selective adaptation in visual cortical neurones," Nature 278, 850-852 (1979).
[CrossRef] [PubMed]

Macleod, D. I. A.

H. B. Barlow, D. I. A. Macleod, and A. Van Meeteren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

D. I. A. Macleod and T. von der Twer, "Optimal opponent colours," in Colour Perception: Mind and the Physical World, R.Mausfeld and D.Heyer, eds. (Oxford U. Press, 2003), pp. 155-184.

Maffei, L.

L. Maffei, A. Fiorentini, and S. Bisti, "Neural correlate of perceptual adaptation to gratings," Science 182, 1036-1038 (1973).
[CrossRef] [PubMed]

McAlpine, D.

I. Dean, N. S. Harper, and D. McAlpine, "Neural population coding of sound level adapts to stimulus statistics," Nat. Neurosci. 8, 1684-1689 (2005).
[CrossRef] [PubMed]

N. S. Harper and D. McAlpine, "Optimal neural population coding of an auditory spatial cue," Nature 430, 682-686 (2004).
[CrossRef] [PubMed]

McCarthy, S. T.

T. Q. Vu, S. T. McCarthy, and G. W. Owen, "Linear transduction of natural stimuli by dark adapted rods of the salamander, Ambystoma tirgrinum," J. Physiol. (London) 505, 193-204 (1997).
[CrossRef]

Morga, M. J.

J. Ross, H. D. Speed, and M. J. Morga, "The effects of adaptation and masking on incremental thresholds for contrast," Vision Res. 33, 2051-2056 (1993).
[CrossRef] [PubMed]

Movshon, J. A.

D. J. Tolhurst, J. A. Movshon, and A. F. Dean, "The statistical reliability of signals in single neurons in cat and monkey visual cortex," Vision Res. 23, 775-785 (1983).
[CrossRef] [PubMed]

D. J. Tolhurst, J. A. Movshon, and I. D. Thompson, "The dependence of response amplitude and variance of cat visual cortical-neurons on stimulus contrast," Exp. Brain Res. 41, 414-419 (1981).
[CrossRef] [PubMed]

J. A. Movshon and P. Lennie, "Pattern-selective adaptation in visual cortical neurones," Nature 278, 850-852 (1979).
[CrossRef] [PubMed]

Nachmias, J.

J. Nachmias and R. V. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

Nadal, J.-P.

N. Brunel and J.-P. Nadal, "Mutual information, Fisher information, and population coding," Neural Comput. 10, 1731-1757 (1998).
[CrossRef] [PubMed]

Ohzawa, I.

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat's visual system," J. Neurophysiol. 54, 651-667 (1985).
[PubMed]

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat visual cortex," Nature 298, 266-268 (1982).
[CrossRef] [PubMed]

Owen, G. W.

T. Q. Vu, S. T. McCarthy, and G. W. Owen, "Linear transduction of natural stimuli by dark adapted rods of the salamander, Ambystoma tirgrinum," J. Physiol. (London) 505, 193-204 (1997).
[CrossRef]

Payne, B. R.

B. R. Payne and A. Peters, The Cat Primary Visual Cortex (Academic, 2002).

Pearce, J. W.

S. G. Solomon, J. W. Pearce, N. T. Dhruv, and P. Lennie, "Profound contrast adaptation early in the visual pathway," Neuron 42, 155-162 (2004).
[CrossRef] [PubMed]

Peters, A.

B. R. Payne and A. Peters, The Cat Primary Visual Cortex (Academic, 2002).

Price, N. S.

N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006).
[CrossRef]

Ross, J.

J. Ross, H. D. Speed, and M. J. Morga, "The effects of adaptation and masking on incremental thresholds for contrast," Vision Res. 33, 2051-2056 (1993).
[CrossRef] [PubMed]

Ruderman, D. L.

D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling the woods," Phys. Rev. Lett. 74, 814-818 (1994).
[CrossRef]

Ruyter, R. R.

S. B. Laughlin, R. R. Ruyter, and J. C. Anderson, "The metabolic cost of neural information," Nat. Neurosci. 1, 36-41 (1998).
[CrossRef]

Sansbury, R. V.

J. Nachmias and R. V. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

Schwartz, O.

M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, "Natural image statistics and divisive normalization," in Probabilistic Models of the Brain, R.P. N.Rao, B.A.Olshausen, and M.S.Lewicki, eds. (MIT, 2002), pp. 203-222.

Sclar, G.

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef] [PubMed]

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat's visual system," J. Neurophysiol. 54, 651-667 (1985).
[PubMed]

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat visual cortex," Nature 298, 266-268 (1982).
[CrossRef] [PubMed]

Simoncelli, E. P.

M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, "Natural image statistics and divisive normalization," in Probabilistic Models of the Brain, R.P. N.Rao, B.A.Olshausen, and M.S.Lewicki, eds. (MIT, 2002), pp. 203-222.

A. A. Stocker and E. P. Simoncelli, "Sensory adaptation within a Bayesian framework for perception," in Advances in Neural Information Processing Systems, Y.Weiss, B.Schoelkopf, and J.Platt, eds. (MIT, 2006), pp. 1291-1298.

Solomon, S. G.

S. G. Solomon, J. W. Pearce, N. T. Dhruv, and P. Lennie, "Profound contrast adaptation early in the visual pathway," Neuron 42, 155-162 (2004).
[CrossRef] [PubMed]

Speed, H. D.

J. Ross, H. D. Speed, and M. J. Morga, "The effects of adaptation and masking on incremental thresholds for contrast," Vision Res. 33, 2051-2056 (1993).
[CrossRef] [PubMed]

Stocker, A. A.

A. A. Stocker and E. P. Simoncelli, "Sensory adaptation within a Bayesian framework for perception," in Advances in Neural Information Processing Systems, Y.Weiss, B.Schoelkopf, and J.Platt, eds. (MIT, 2006), pp. 1291-1298.

Tadmor, Y.

Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
[CrossRef] [PubMed]

Teich, M. C.

M. C. Teich, "Fractal character of the auditory neural spike train," IEEE Trans. Biomed. Eng. 36, 150-160 (1989).
[CrossRef] [PubMed]

Thompson, I. D.

D. J. Tolhurst, J. A. Movshon, and I. D. Thompson, "The dependence of response amplitude and variance of cat visual cortical-neurons on stimulus contrast," Exp. Brain Res. 41, 414-419 (1981).
[CrossRef] [PubMed]

Tolhurst, D. J.

M. Chirimuuta, P. L. Clatworthy, and D. J. Tolhurst, "Coding of the contrast in natural images by visual cortex (V1) neurons: a Bayesian approach," J. Opt. Soc. Am. A 20, 1253-1260 (2003).
[CrossRef]

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
[CrossRef] [PubMed]

D. J. Tolhurst, J. A. Movshon, and A. F. Dean, "The statistical reliability of signals in single neurons in cat and monkey visual cortex," Vision Res. 23, 775-785 (1983).
[CrossRef] [PubMed]

D. J. Tolhurst, J. A. Movshon, and I. D. Thompson, "The dependence of response amplitude and variance of cat visual cortical-neurons on stimulus contrast," Exp. Brain Res. 41, 414-419 (1981).
[CrossRef] [PubMed]

Van Meeteren, A.

H. B. Barlow, D. I. A. Macleod, and A. Van Meeteren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

Vautin, R. G.

R. G. Vautin and M. A. Berkley, "Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects," J. Neurophysiol. 40, 1051-1065 (1977).
[PubMed]

von der Twer, T.

D. I. A. Macleod and T. von der Twer, "Optimal opponent colours," in Colour Perception: Mind and the Physical World, R.Mausfeld and D.Heyer, eds. (Oxford U. Press, 2003), pp. 155-184.

Vu, T. Q.

T. Q. Vu, S. T. McCarthy, and G. W. Owen, "Linear transduction of natural stimuli by dark adapted rods of the salamander, Ambystoma tirgrinum," J. Physiol. (London) 505, 193-204 (1997).
[CrossRef]

Wainwright, M. J.

M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, "Natural image statistics and divisive normalization," in Probabilistic Models of the Brain, R.P. N.Rao, B.A.Olshausen, and M.S.Lewicki, eds. (MIT, 2002), pp. 203-222.

Curr. Biol. (2)

M. Carandini, "Visual cortex: fatigue and adaptation," Curr. Biol. 10, R605-R607 (2000).
[CrossRef] [PubMed]

P. Lennie, "The cost of cortical computation," Curr. Biol. 13, 293-497 (2003).
[CrossRef]

Exp. Brain Res. (1)

D. J. Tolhurst, J. A. Movshon, and I. D. Thompson, "The dependence of response amplitude and variance of cat visual cortical-neurons on stimulus contrast," Exp. Brain Res. 41, 414-419 (1981).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

M. C. Teich, "Fractal character of the auditory neural spike train," IEEE Trans. Biomed. Eng. 36, 150-160 (1989).
[CrossRef] [PubMed]

J. Neurophysiol. (3)

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat's visual system," J. Neurophysiol. 54, 651-667 (1985).
[PubMed]

R. G. Vautin and M. A. Berkley, "Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects," J. Neurophysiol. 40, 1051-1065 (1977).
[PubMed]

N. A. Crowder, N. S. Price, M. A. Hietanen, C. W. G. Clifford, and M. R. Ibbotson, "Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex," J. Neurophysiol. 95, 271-283 (2006).
[CrossRef]

J. Neurosci. (1)

D. G. Albrecht and D. B. Hamilton, "Striate cortex of monkey and cat: contrast response function," J. Neurosci. 48, 217-237 (1982).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Physiol. (London) (1)

T. Q. Vu, S. T. McCarthy, and G. W. Owen, "Linear transduction of natural stimuli by dark adapted rods of the salamander, Ambystoma tirgrinum," J. Physiol. (London) 505, 193-204 (1997).
[CrossRef]

Nat. Neurosci. (2)

I. Dean, N. S. Harper, and D. McAlpine, "Neural population coding of sound level adapts to stimulus statistics," Nat. Neurosci. 8, 1684-1689 (2005).
[CrossRef] [PubMed]

S. B. Laughlin, R. R. Ruyter, and J. C. Anderson, "The metabolic cost of neural information," Nat. Neurosci. 1, 36-41 (1998).
[CrossRef]

Nature (3)

N. S. Harper and D. McAlpine, "Optimal neural population coding of an auditory spatial cue," Nature 430, 682-686 (2004).
[CrossRef] [PubMed]

J. A. Movshon and P. Lennie, "Pattern-selective adaptation in visual cortical neurones," Nature 278, 850-852 (1979).
[CrossRef] [PubMed]

I. Ohzawa, G. Sclar, and R. D. Freeman, "Contrast gain control in the cat visual cortex," Nature 298, 266-268 (1982).
[CrossRef] [PubMed]

Neural Comput. (2)

N. Brunel and J.-P. Nadal, "Mutual information, Fisher information, and population coding," Neural Comput. 10, 1731-1757 (1998).
[CrossRef] [PubMed]

A. Gottschalk, "Derivation of the visual contrast response function by maximizing information rate," Neural Comput. 14, 527-542 (2002).
[CrossRef] [PubMed]

Neuron (1)

S. G. Solomon, J. W. Pearce, N. T. Dhruv, and P. Lennie, "Profound contrast adaptation early in the visual pathway," Neuron 42, 155-162 (2004).
[CrossRef] [PubMed]

Perception (1)

N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling the woods," Phys. Rev. Lett. 74, 814-818 (1994).
[CrossRef]

PLOS Comput. Biol. (1)

D. A. Butts and M. S. Goldman, "Tuning curves, neuronal variability and sensory coding," PLOS Comput. Biol. 4, 1-8 (2006).

Science (1)

L. Maffei, A. Fiorentini, and S. Bisti, "Neural correlate of perceptual adaptation to gratings," Science 182, 1036-1038 (1973).
[CrossRef] [PubMed]

Spatial Vis. (1)

G. Abbonizio, K. Langley, and C. W. G. Clifford, "Contrast adaptation may enhance contrast discrimination," Spatial Vis. 16, 45-58 (2002).
[CrossRef]

Vision Res. (12)

D. J. Tolhurst, J. A. Movshon, and A. F. Dean, "The statistical reliability of signals in single neurons in cat and monkey visual cortex," Vision Res. 23, 775-785 (1983).
[CrossRef] [PubMed]

H. B. Barlow, D. I. A. Macleod, and A. Van Meeteren, "Adaptation to gratings: no compensatory advantages found," Vision Res. 16, 1043-1045 (1976).
[CrossRef] [PubMed]

J. J. Kulikowski and A. Gorea, "Complete adaptation to patterned stimuli: a necessary and sufficient condition for Weber's law for contrast," Vision Res. 18, 1223-1227 (1978).
[CrossRef] [PubMed]

M. W. Greenlee and F. Heitger, "Functional role of contrast adaptation," Vision Res. 28, 791-797 (1988).
[CrossRef] [PubMed]

J. Ross, H. D. Speed, and M. J. Morga, "The effects of adaptation and masking on incremental thresholds for contrast," Vision Res. 33, 2051-2056 (1993).
[CrossRef] [PubMed]

J. M. Foley and C. Chen, "Analysis of the effect of pattern adaptation on pattern pedestal effects: a two process model," Vision Res. 37, 2779-2788 (1997).
[CrossRef] [PubMed]

P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003).
[CrossRef] [PubMed]

Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000).
[CrossRef] [PubMed]

R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003).
[CrossRef] [PubMed]

A. F. Dean, "Adaptation-induced alternation of the relation between response amplitude and contrast in cat striate cortical neurones," Vision Res. 23, 249-256 (1983).
[CrossRef] [PubMed]

G. Sclar, P. Lennie, and D. DePriest, "Contrast adaptation in striate cortex of macaque," Vision Res. 29, 747-755 (1989).
[CrossRef] [PubMed]

J. Nachmias and R. V. Sansbury, "Grating contrast: discrimination may be better than detection," Vision Res. 14, 1039-1042 (1974).
[CrossRef] [PubMed]

Visual Neurosci. (1)

W. S. Geisler and D. G. Albrecht, "Visual cortex neurons in monkeys and cats: detection, discrimination, and identification," Visual Neurosci. 14, 897-919 (1997).
[CrossRef]

Other (5)

M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, "Natural image statistics and divisive normalization," in Probabilistic Models of the Brain, R.P. N.Rao, B.A.Olshausen, and M.S.Lewicki, eds. (MIT, 2002), pp. 203-222.

D. I. A. Macleod and T. von der Twer, "Optimal opponent colours," in Colour Perception: Mind and the Physical World, R.Mausfeld and D.Heyer, eds. (Oxford U. Press, 2003), pp. 155-184.

P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT, 2001).

B. R. Payne and A. Peters, The Cat Primary Visual Cortex (Academic, 2002).

A. A. Stocker and E. P. Simoncelli, "Sensory adaptation within a Bayesian framework for perception," in Advances in Neural Information Processing Systems, Y.Weiss, B.Schoelkopf, and J.Platt, eds. (MIT, 2006), pp. 1291-1298.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fitting a function to a cell’s nonadapted and adapted contrast response. (a) An example of a cell’s responses to drifting gratings of different levels of contrast fitted with a sigmoid [Eq. (2)]. (b) An example of the smoothed response of a cell over a 0.5 s time window to different levels of contrast, as used to generate the points in (a).

Fig. 2
Fig. 2

Histograms of the distributions of the parameters of the best-fitting contrast response functions of the subpopulation of cells that was adapted at 32% contrast. Histograms show distributions before and after adaptation ( N = 78 ) . Overlapping areas are shown in gray.

Fig. 3
Fig. 3

Fisher information for nonadapted neurons. (a) The contrast response function for a single neuron (solid curve, for parameters R max = 114 , q = 2.77 , c 50 = 32 , spont = 7 ) shown with the corresponding Fisher information scaled to the maximum of the contrast response function (dashed curve). (b) The population contrast accuracy (Fisher information; axis on right) overlaid on Fig. 1a reproduced from Chirimuuta et al.,[13] showing the distribution of contrasts in natural scenes (axis on left). The two share a similar shape but peak at slightly different values. The 95% confidence intervals shown in gray were calculated by drawing 500 bootstrap samples of the neuronal population, calculating the overall Fisher information each time and finding the 95% limits at each level of contrast.

Fig. 4
Fig. 4

Difference between nonadapted and adapted population accuracy. The arrow indicates the adapting contrast. In each case the nonadapted curve is calculated from the same cells used for the adapted response. The 95% confidence intervals shown in gray were calculated as in Fig. 3. (a) The 16% contrast, before and after adaptation; (b) 16% contrast, as a ratio of postadaptation to preadaptation accuracy ( log 10   units ) ; (c) 32% contrast, before and after adaptation; (d) 32% contrast, as a ratio of postadaptation to preadaptation accuracy ( log 10   units ) ; (e) 100% contrast, before and after adaptation; (f) 100% contrast, as a ratio of postadaptation to preadaptation accuracy ( log 10   units ) .

Fig. 5
Fig. 5

Summed spike rate was divided by the number of cells to yield an average spike rate/cell as a function of contrast. This measure enabled comparison over different sample sizes for the different adaptation conditions.

Fig. 6
Fig. 6

Plot of performance per spike for the population of neurons adapted at (a) 16% contrast, before and after adaptation. In each case the nonadapted curve is calculated from the same cells used for the adapted response. (b) The 16% contrast, as a ratio of postadaptation to preadaptation performance ( log 10   units ) ; (c) 32% contrast, before and after adaptation; (d) 32% contrast, as a ratio of postadaptation to preadaptation performance ( log 10   units ) ; (e) 100% contrast, before and after adaptation; (f) 100% contrast, as a ratio of postadaptation to preadaptation performance ( log 10   units ) . Arrow shows the adapting contrast. The 95% confidence intervals shown in gray were calculated as in Fig. 3.

Fig. 7
Fig. 7

(a) Discrimination threshold estimated from our population of neurons. Threshold is calculated as 1 F ( c ) , where F ( c ) is the Fisher information calculated as a function of contrast. Adapting contrast is indicated by arrow. In comparing the results from the physiological data with the human psychophysical data from other work, we find some agreement: (a) 32% adaptation shown on log axis for comparison on the right with a single subject (reprinted from Ross et al.[25] with permission from Elsevier), (b) 32% and 100% adaptation shown on linear axis for comparison with a single subject (reprinted from Greenlee and Heitger[24] with permission from Elsevier).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R ( c i ) = R max [ c i q c 50 q + c i q ] + spont ,
f i ( c ) = { [ R i ( c ) ] c } 2 k R i ( c ) T ,
F ( c ) = i = 1 N { [ R i ( c ) ] c } 2 k R i ( c ) .

Metrics