Abstract

Imaging polarimetry was used to examine different components of neovascular membranes in age-related macular degeneration. Retinal images were acquired with a scanning laser polarimeter. An innovative pseudocolor scale, based on cardinal directions of color, displayed two types of image information: relative phases and magnitudes of birefringence. Membranes had relative phase changes that did not correspond to anatomical structures in reflectance images. Further, membrane borders in depolarized light images had significantly higher contrasts than those in reflectance images. The retinal birefringence in neovascular membranes indicates optical activity consistent with molecular changes rather than merely geometrical changes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Schlingemann, "Role of growth factors and the wound healing response in age-related macular degeneration," Graefe's Arch. Clin. Exp. Ophthalmol. 24, 91-101 (2004).
    [CrossRef]
  2. H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).
  3. H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).
  4. A. E. Elsner, S. Burns, J. Weiter, and F. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
    [CrossRef] [PubMed]
  5. E. M. Hartnett and A. E. Elsner, "Characteristics of exudative age-related macular degeneration determined in vivo with confocal direct and indirect infrared imaging," Ophthalmology 103, 58-71 (1996).
    [PubMed]
  6. M. Miura and A. E. Elsner, "Three dimensional imaging in age-related macular degeneration," Opt. Express 9, 436-443 (2001).
    [CrossRef] [PubMed]
  7. M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
    [CrossRef] [PubMed]
  8. A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. P. Walker, G. L. Wing, P. A. Raskauskas, D. C. Fletcher, Q. Zhou, and A. W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2000).
    [CrossRef] [PubMed]
  9. C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
    [CrossRef] [PubMed]
  10. M. E. Hartnett, J. J. Weiter, G. Staurenghi, and A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmology 103, 2042-2053 (1996).
    [PubMed]
  11. L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
    [CrossRef] [PubMed]
  12. A. E. Elsner, M. Miura, J. B. Stewart, M. B. Kairala, and S. A. Burns, "Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels," Stud. Health Technol. Inform. 94, 59-61 (2003).
  13. S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, "Improved contrast of subretinal structures using polarization analysis," Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003).
    [CrossRef]
  14. A. Weber, M. C. Cheney, Q. Y. J. Smithwick, and A. E. Elsner, "Polarimetric imaging and blood vessel quantification," Opt. Express 12, 5178-5190 (2004).
    [CrossRef] [PubMed]
  15. M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
    [CrossRef] [PubMed]
  16. M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005).
    [CrossRef]
  17. A. Weber, A. E. Elsner, M. Mirua, S. Kompa, and M. C. Cheney, "Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration," Eye (2006).
    [PubMed]
  18. G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
    [CrossRef] [PubMed]
  19. A. W. Dreher, K. Reiter, and R. N. Weinreb, "Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer," Appl. Opt. 31, 3730-3735 (1992).
    [CrossRef] [PubMed]
  20. D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, and D. L. Guyton, "Mathematical modeling of retinal birefringence scanning," J. Opt. Soc. Am. A 16, 2103-2111 (1999).
    [CrossRef]
  21. A. E. Elsner, M. C. Cheney, A. Weber, and M. Miura, "Visualization of two image variables simultaneously using cardinal directions of color vision," Stud. Health Technol. Inform. 98, 89-91 (2004).
    [PubMed]
  22. A. E. Elsner, J. Pokorny, and S. A. Burns, "Chromaticity discrimination: effects of luminance contrast and spatial frequency," J. Opt. Soc. Am. A 3, 916-920 (1986).
    [CrossRef] [PubMed]
  23. T. Hansen and K. Gegenfurtner, "Higher level chromatic mechanisms for image segmentation," J. Vision 13, 239-259 (2006).

2006 (3)

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

A. Weber, A. E. Elsner, M. Mirua, S. Kompa, and M. C. Cheney, "Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration," Eye (2006).
[PubMed]

T. Hansen and K. Gegenfurtner, "Higher level chromatic mechanisms for image segmentation," J. Vision 13, 239-259 (2006).

2005 (3)

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005).
[CrossRef]

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

2004 (3)

R. O. Schlingemann, "Role of growth factors and the wound healing response in age-related macular degeneration," Graefe's Arch. Clin. Exp. Ophthalmol. 24, 91-101 (2004).
[CrossRef]

A. E. Elsner, M. C. Cheney, A. Weber, and M. Miura, "Visualization of two image variables simultaneously using cardinal directions of color vision," Stud. Health Technol. Inform. 98, 89-91 (2004).
[PubMed]

A. Weber, M. C. Cheney, Q. Y. J. Smithwick, and A. E. Elsner, "Polarimetric imaging and blood vessel quantification," Opt. Express 12, 5178-5190 (2004).
[CrossRef] [PubMed]

2003 (2)

A. E. Elsner, M. Miura, J. B. Stewart, M. B. Kairala, and S. A. Burns, "Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels," Stud. Health Technol. Inform. 94, 59-61 (2003).

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, "Improved contrast of subretinal structures using polarization analysis," Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003).
[CrossRef]

2002 (1)

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

2001 (2)

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

M. Miura and A. E. Elsner, "Three dimensional imaging in age-related macular degeneration," Opt. Express 9, 436-443 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, and D. L. Guyton, "Mathematical modeling of retinal birefringence scanning," J. Opt. Soc. Am. A 16, 2103-2111 (1999).
[CrossRef]

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
[CrossRef] [PubMed]

1998 (1)

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

1996 (3)

M. E. Hartnett, J. J. Weiter, G. Staurenghi, and A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmology 103, 2042-2053 (1996).
[PubMed]

A. E. Elsner, S. Burns, J. Weiter, and F. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

E. M. Hartnett and A. E. Elsner, "Characteristics of exudative age-related macular degeneration determined in vivo with confocal direct and indirect infrared imaging," Ophthalmology 103, 58-71 (1996).
[PubMed]

1992 (1)

1986 (1)

Bairaktaris, G.

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

Beausencourt, E.

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. P. Walker, G. L. Wing, P. A. Raskauskas, D. C. Fletcher, Q. Zhou, and A. W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2000).
[CrossRef] [PubMed]

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
[CrossRef] [PubMed]

Borodoker, N.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Bressler, N. M.

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Bressler, S. B.

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Burns, S.

A. E. Elsner, S. Burns, J. Weiter, and F. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Burns, S. A.

M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005).
[CrossRef]

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, "Improved contrast of subretinal structures using polarization analysis," Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003).
[CrossRef]

A. E. Elsner, M. Miura, J. B. Stewart, M. B. Kairala, and S. A. Burns, "Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels," Stud. Health Technol. Inform. 94, 59-61 (2003).

A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. P. Walker, G. L. Wing, P. A. Raskauskas, D. C. Fletcher, Q. Zhou, and A. W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2000).
[CrossRef] [PubMed]

A. E. Elsner, J. Pokorny, and S. A. Burns, "Chromaticity discrimination: effects of luminance contrast and spatial frequency," J. Opt. Soc. Am. A 3, 916-920 (1986).
[CrossRef] [PubMed]

Carvalho, C.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Cheney, M. C.

A. Weber, A. E. Elsner, M. Mirua, S. Kompa, and M. C. Cheney, "Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration," Eye (2006).
[PubMed]

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

A. E. Elsner, M. C. Cheney, A. Weber, and M. Miura, "Visualization of two image variables simultaneously using cardinal directions of color vision," Stud. Health Technol. Inform. 98, 89-91 (2004).
[PubMed]

A. Weber, M. C. Cheney, Q. Y. J. Smithwick, and A. E. Elsner, "Polarimetric imaging and blood vessel quantification," Opt. Express 12, 5178-5190 (2004).
[CrossRef] [PubMed]

Delori, F.

A. E. Elsner, S. Burns, J. Weiter, and F. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Dreher, A. W.

Elsner, A. E.

A. Weber, A. E. Elsner, M. Mirua, S. Kompa, and M. C. Cheney, "Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration," Eye (2006).
[PubMed]

M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005).
[CrossRef]

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

A. E. Elsner, M. C. Cheney, A. Weber, and M. Miura, "Visualization of two image variables simultaneously using cardinal directions of color vision," Stud. Health Technol. Inform. 98, 89-91 (2004).
[PubMed]

A. Weber, M. C. Cheney, Q. Y. J. Smithwick, and A. E. Elsner, "Polarimetric imaging and blood vessel quantification," Opt. Express 12, 5178-5190 (2004).
[CrossRef] [PubMed]

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, "Improved contrast of subretinal structures using polarization analysis," Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003).
[CrossRef]

A. E. Elsner, M. Miura, J. B. Stewart, M. B. Kairala, and S. A. Burns, "Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels," Stud. Health Technol. Inform. 94, 59-61 (2003).

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

M. Miura and A. E. Elsner, "Three dimensional imaging in age-related macular degeneration," Opt. Express 9, 436-443 (2001).
[CrossRef] [PubMed]

A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. P. Walker, G. L. Wing, P. A. Raskauskas, D. C. Fletcher, Q. Zhou, and A. W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2000).
[CrossRef] [PubMed]

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
[CrossRef] [PubMed]

M. E. Hartnett, J. J. Weiter, G. Staurenghi, and A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmology 103, 2042-2053 (1996).
[PubMed]

E. M. Hartnett and A. E. Elsner, "Characteristics of exudative age-related macular degeneration determined in vivo with confocal direct and indirect infrared imaging," Ophthalmology 103, 58-71 (1996).
[PubMed]

A. E. Elsner, S. Burns, J. Weiter, and F. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

A. E. Elsner, J. Pokorny, and S. A. Burns, "Chromaticity discrimination: effects of luminance contrast and spatial frequency," J. Opt. Soc. Am. A 3, 916-920 (1986).
[CrossRef] [PubMed]

Fletcher, D. C.

Freund, K. B.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Fullwood, N. J.

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

Gegenfurtner, K.

T. Hansen and K. Gegenfurtner, "Higher level chromatic mechanisms for image segmentation," J. Vision 13, 239-259 (2006).

Green, W. R.

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Grossniklaus, H. E.

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Guyton, D. L.

Hansen, T.

T. Hansen and K. Gegenfurtner, "Higher level chromatic mechanisms for image segmentation," J. Vision 13, 239-259 (2006).

Hartnett, E. M.

E. M. Hartnett and A. E. Elsner, "Characteristics of exudative age-related macular degeneration determined in vivo with confocal direct and indirect infrared imaging," Ophthalmology 103, 58-71 (1996).
[PubMed]

Hartnett, M. E.

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
[CrossRef] [PubMed]

M. E. Hartnett, J. J. Weiter, G. Staurenghi, and A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmology 103, 2042-2053 (1996).
[PubMed]

Hawkins, B. S.

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Hunter, D. G.

Iida, T.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Iwasaki, T.

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

Kairala, M. B.

A. E. Elsner, M. Miura, J. B. Stewart, M. B. Kairala, and S. A. Burns, "Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels," Stud. Health Technol. Inform. 94, 59-61 (2003).

Kelley, L.

Kompa, S.

A. Weber, A. E. Elsner, M. Mirua, S. Kompa, and M. C. Cheney, "Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration," Eye (2006).
[PubMed]

Kunze, C.

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. P. Walker, G. L. Wing, P. A. Raskauskas, D. C. Fletcher, Q. Zhou, and A. W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2000).
[CrossRef] [PubMed]

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
[CrossRef] [PubMed]

Lashkari, K.

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

Lewis, D.

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

Marcyniuk, B.

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

Mellem-Kairala, M. B.

M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005).
[CrossRef]

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, "Improved contrast of subretinal structures using polarization analysis," Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003).
[CrossRef]

Mirua, M.

A. Weber, A. E. Elsner, M. Mirua, S. Kompa, and M. C. Cheney, "Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration," Eye (2006).
[PubMed]

Miskala, P. H.

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Miura, M.

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

A. E. Elsner, M. C. Cheney, A. Weber, and M. Miura, "Visualization of two image variables simultaneously using cardinal directions of color vision," Stud. Health Technol. Inform. 98, 89-91 (2004).
[PubMed]

A. E. Elsner, M. Miura, J. B. Stewart, M. B. Kairala, and S. A. Burns, "Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels," Stud. Health Technol. Inform. 94, 59-61 (2003).

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

M. Miura and A. E. Elsner, "Three dimensional imaging in age-related macular degeneration," Opt. Express 9, 436-443 (2001).
[CrossRef] [PubMed]

A. E. Elsner, M. Miura, S. A. Burns, E. Beausencourt, C. Kunze, L. Kelley, J. P. Walker, G. L. Wing, P. A. Raskauskas, D. C. Fletcher, Q. Zhou, and A. W. Dreher, "Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration," Opt. Express 7, 95-106 (2000).
[CrossRef] [PubMed]

Moraes, L.

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
[CrossRef] [PubMed]

Negrao, S.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Nieduszynski, I. A.

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

Orlock, D.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Osako, M.

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

Patel, S. N.

Pokorny, J.

Quantock, A. J.

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

Raskauskas, P. A.

Reiter, K.

Ridgway, A. E.

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

Rodriguez-Coleman, H.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Sandruck, J. C.

Sau, S.

Schlingemann, R. O.

R. O. Schlingemann, "Role of growth factors and the wound healing response in age-related macular degeneration," Graefe's Arch. Clin. Exp. Ophthalmol. 24, 91-101 (2004).
[CrossRef]

Simmons, R. B.

M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005).
[CrossRef]

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, "Improved contrast of subretinal structures using polarization analysis," Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003).
[CrossRef]

Slakter, J.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Smithwick, Q. Y. J.

Sorenson, J.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Staurenghi, G.

M. E. Hartnett, J. J. Weiter, G. Staurenghi, and A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmology 103, 2042-2053 (1996).
[PubMed]

Stewart, J. B.

A. E. Elsner, M. Miura, J. B. Stewart, M. B. Kairala, and S. A. Burns, "Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels," Stud. Health Technol. Inform. 94, 59-61 (2003).

Toth, C.

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Toth, C. A.

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

Trempe, C.

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

Trempe, C. L.

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
[CrossRef] [PubMed]

Usui, M.

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

Walker, J. P.

Weber, A.

A. Weber, A. E. Elsner, M. Mirua, S. Kompa, and M. C. Cheney, "Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration," Eye (2006).
[PubMed]

M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005).
[CrossRef]

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

A. E. Elsner, M. C. Cheney, A. Weber, and M. Miura, "Visualization of two image variables simultaneously using cardinal directions of color vision," Stud. Health Technol. Inform. 98, 89-91 (2004).
[PubMed]

A. Weber, M. C. Cheney, Q. Y. J. Smithwick, and A. E. Elsner, "Polarimetric imaging and blood vessel quantification," Opt. Express 12, 5178-5190 (2004).
[CrossRef] [PubMed]

Weinreb, R. N.

Weiter, J.

A. E. Elsner, S. Burns, J. Weiter, and F. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Weiter, J. J.

M. E. Hartnett, J. J. Weiter, G. Staurenghi, and A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmology 103, 2042-2053 (1996).
[PubMed]

Wilson, D. J.

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

Wilson, J.

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Wing, G. L.

Yannuzzi, L. A.

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

Zhou, Q.

Am. J. Ophthalmol. (1)

M. Miura, A. E. Elsner, A. Weber, M. C. Cheney, M. Osako, M. Usui, and T. Iwasaki, "Imaging polarimetry in central serous chorioretinopathy," Am. J. Ophthalmol. 140, 1014-1019 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (Chicago) (1)

H. E. Grossniklaus, P. H. Miskala, W. R. Green, S. B. Bressler, B. S. Hawkins, C. Toth, J. Wilson, and N. M. Bressler, "Histopathologic and ultrastructural features of surgically excised subfoveal choroidal neovascular lesions: submacular surgery trials report no. 7," Arch. Ophthalmol. (Chicago) 123, 914-921 (2005).

Cornea (1)

G. Bairaktaris, D. Lewis, N. J. Fullwood, I. A. Nieduszynski, B. Marcyniuk, A. J. Quantock, and A. E. Ridgway, "An ultrastructural investigation into proteoglycan distribution in human corneas," Cornea 17, 396-402 (1998).
[CrossRef] [PubMed]

Eye (1)

A. Weber, A. E. Elsner, M. Mirua, S. Kompa, and M. C. Cheney, "Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration," Eye (2006).
[PubMed]

Graefe's Arch. Clin. Exp. Ophthalmol. (1)

R. O. Schlingemann, "Role of growth factors and the wound healing response in age-related macular degeneration," Graefe's Arch. Clin. Exp. Ophthalmol. 24, 91-101 (2004).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (2)

S. A. Burns, A. E. Elsner, M. B. Mellem-Kairala, and R. B. Simmons, "Improved contrast of subretinal structures using polarization analysis," Invest. Ophthalmol. Visual Sci. 44, 4061-4068 (2003).
[CrossRef]

M. B. Mellem-Kairala, A. E. Elsner, A. Weber, R. B. Simmons, and S. A. Burns, "Improved contrast of peripapillary hyperpigmentation using polarization analysis," Invest. Ophthalmol. Visual Sci. 46, 1099-1106 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vision (1)

T. Hansen and K. Gegenfurtner, "Higher level chromatic mechanisms for image segmentation," J. Vision 13, 239-259 (2006).

Ophthalmology (4)

H. E. Grossniklaus, S. B. Bressler, P. H. Miskala, W. R. Green, N. M. Bressler, B. S. Hawkins, C. A. Toth, and D. J. Wilson (Submacular Surgery Trials Research Group), "Comparison of 2D reconstructions of surgically excised subfoveal choroidal neovascularization with fluorescein angiographic features: SST report No. 15," Ophthalmology 113, 279.e1-279.e5 (2006).

E. M. Hartnett and A. E. Elsner, "Characteristics of exudative age-related macular degeneration determined in vivo with confocal direct and indirect infrared imaging," Ophthalmology 103, 58-71 (1996).
[PubMed]

C. Kunze, A. E. Elsner, E. Beausencourt, L. Moraes, M. E. Hartnett, and C. L. Trempe, "Spatial extent of pigment epithelial detachments in age-related macular degeneration," Ophthalmology 106, 1830-1840 (1999).
[CrossRef] [PubMed]

M. E. Hartnett, J. J. Weiter, G. Staurenghi, and A. E. Elsner, "Deep retinal vascular anomalous complexes in advanced age-related macular degeneration," Ophthalmology 103, 2042-2053 (1996).
[PubMed]

Opt. Express (3)

Retina (2)

L. A. Yannuzzi, S. Negrao, T. Iida, C. Carvalho, H. Rodriguez-Coleman, J. Slakter, K. B. Freund, J. Sorenson, D. Orlock, and N. Borodoker, "Retinal angiomatous proliferation in age-related macular degeneration," Retina 21, 416-434 (2001).
[CrossRef] [PubMed]

M. Miura, A. E. Elsner, E. Beausencourt, C. Kunze, M. E. Hartnett, K. Lashkari, and C. Trempe, "Grading of infrared confocal scanning laser tomography and video displays of digitized color slides in exudative age-related macular degeneration," Retina 22, 300-308 (2002).
[CrossRef] [PubMed]

Stud. Health Technol. Inform. (2)

A. E. Elsner, M. C. Cheney, A. Weber, and M. Miura, "Visualization of two image variables simultaneously using cardinal directions of color vision," Stud. Health Technol. Inform. 98, 89-91 (2004).
[PubMed]

A. E. Elsner, M. Miura, J. B. Stewart, M. B. Kairala, and S. A. Burns, "Novel algorithms for polarization imaging resulting in improved quantification of retinal blood vessels," Stud. Health Technol. Inform. 94, 59-61 (2003).

Vision Res. (1)

A. E. Elsner, S. Burns, J. Weiter, and F. Delori, "Infrared imaging of sub-retinal structures in the human ocular fundus," Vision Res. 36, 191-205 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of exudation in AMD. A well-defined lesion is shown at the upper left, from the polarimetric imaging. The corresponding lesion complex is shown at the lower left, which gives the appearance en face of dark core surrounded by a lighter halo. The lesion at the right is an occult lesion, which is less distinct as it lies mostly beneath the retina. Gray arrows indicate a strong light return from proteins or lipids, with darker arrows indicating scatter or absorption from blood within vessels or hemorrhage.

Fig. 2
Fig. 2

Schematic diagram of ocular components that influence polarization, separated according to two types of light–tissue interactions. Those tissues potentially acting as birefringent crystals or retaining the polarization content of the input illumination are labeled in black. Those leading to more randomly polarized light are labeled in gray.

Fig. 3
Fig. 3

Raw data of the retina from a 71 year old Japanese male patient with exudative AMD. There are 20 raw images each from the crossed detector, each paired with 20 from the parallel detector, varying as a function of input polarization angle. Note changes with polarization angle, particularly visible in the lesion when using the crossed detector. The rightmost image emphasizes features that are less well visualized in any of the raw images, particularly a component of the membrane that is a pool of fluid that scatters light.

Fig. 4
Fig. 4

Schematic diagram of the polarimetry algorithm that is used to compute images with different polarization content, with data from the patient in Fig. 1. The gray scale for each pixel is calculated for each of 20 input polarization angles. (Top left) Two regions of interest are shown, with the average gray-scale value plotted to enable the comparison of the curve shapes for features that strongly with input polarization angle. (Top right) Gray-scale curves plotted as a function of input polarization angle, with each polarization angle being color coded to form a hue circle. (Bottom left) Hue circle, with opponent colors on orthogonal axes, that is the basis of the cardinal directions color map. The scale (in radians) represents the position on the color circle with phase wrapping; the frequency shown corresponds to the position on the hue circle and not that of the input polarization, which goes at twice the frequency because birefringent structures are symmetric. (Bottom right) Resulting color-coded image of input polarization angle at the maximum of the modulation at each pixel.

Fig. 5
Fig. 5

Retinal images, varying in polarization content, of a 70 year old white female with a normal retina. (Top left) Depolarized light image, emphasizing deeper features and with retinal vessels seen as absorbing structures, rather than the largest retinal vessels appearing to have highly reflective vessel walls. (Top middle) Average of all 40 images. Note in the lower right that there is a bright stripe down the center of the larger retinal vessel. (Top right) Maximum of the parallel detector, emphasizing superficial features. This image is the brightest of all computed images prior to scaling. (Bottom left) Birefringence image, showing a typical macular cross. (Bottom middle) Cardinal directions map of phase of the maximum phase of the crossed detector. The macular cross indicates good symmetry about the fovea, indicating an intact retina. The bright green area in the lower right of this panel is the strong light return of the nerve fiber bundle, which can be seen as achromatic in the birefringence figure. (Bottom right) Cardinal directions map of phase of the maximum phase of the parallel detector.

Fig. 6
Fig. 6

Retinal images, varying in polarization content, of optic nerve head and peripapillary region of the subject in Fig. 5. (Top left) Depolarized light image, emphasizing deeper features and with the retinal vessels seen as absorbing structures, rather than the larger vessels appearing to have highly reflective vessel walls. Peripapillary atrophy is readily visible. (Top middle) Average of all 40 images. Note bright stripes down the centers of the larger retinal vessels. (Top right) Maximum of the parallel detector, emphasizing superficial features. This image is the brightest of all computed images prior to scaling. (Bottom left) Birefringence image, showing strong birefringence, somewhat asymmetrical around the optic nerve head. (Bottom middle) Cardinal directions map of phase of the maximum phase of the crossed detector, showing a striking change in the strength of the signal as a function of input polarization angle, corresponding to the direct of the nerve fiber bundles (Bottom right) Cardinal directions map of phase of the maximum phase of the parallel detector.

Fig. 7
Fig. 7

Retinal images of the patient from Fig. 3, showing a complex exudative lesion that includes subretinal components and a pool of fluid in the more superficial layers in contact with retinal vascular changes. (Top left) Depolarized light image, showing that the lesion has several components and fluid. (Top middle) Average image, with somewhat increased emphasis on the more superficial components, and better visualization of the striae than in the depolarized light image. (Top right) Parallel polarized light image, with contrast adjusted to emphasize fluid pooled in the superficial region and in contact with retinal vessel anomalies, suggesting a RVAC. (Bottom left) Birefringence image, showing no evidence of a macular cross. (Bottom middle) Maximum of the crossed detector, with striking changes across the retina that indicate that the phase of the maximum signal as a function of the input polarization angle varies over the exudative lesion component. There is no evidence of the typical and regular pattern of a macular cross. In addition, the birefringence changes do not correspond to a single anatomic feature that is readily visible, as shown in the top-left panel, but rather there are several groups of adjacent pixels that all have similar and strong responses as a function of input polarization angle. (Bottom right) Maximum of the parallel detector, again showing strong variations in polarization content, clustering into small areas that vary similarly with input polarization angle.

Fig. 8
Fig. 8

FA and polarization images of the patient from Fig. 3. (Top left) Early-phase FA. (Top middle) Parallel polarized light image, showing the pool of fluid that corresponds to the region of leakage in the FA that blocks the deeper fluorescence. (Top right) Dashed circle shows presumptive border of the visualized pool, with the three sampled regions of interest enclosed within boxes. The middle sample within the pool does not differ from the top one, also within the pool, but does differ from the bottom one outside the pool. (Bottom left) Late-phase FA, with the pool of fluid seen in the parallel polarized light image blocking the fluorescence. (Bottom middle) Depolarized light image, showing exudation, but de-emphasizing the superficial pool of fluid. (Bottom right) Depolarized light image, with regions of interest as in the top-right image, but with a difference between the top and the middle samples and no difference between the middle and the bottom samples.

Fig. 9
Fig. 9

(Upper panels) Retinal images of a 48 year old Japanese male with a PED. (Top left) Single panel from the crossed detector, showing a strong return at specific locations that do not correspond to regions of strong light return in the other image types in the middle and right columns. (Top middle) Average image, with increased emphasis on the more superficial components and better visualization of the fluid than in the depolarized light image. (Top right) Maximum of the parallel detector. (Bottom left) Birefringence image, showing a disrupted macular cross and fringes in a concentric pattern around the lesion. (Bottom middle) Maximum of the crossed detector, indicating that the phase producing the maximum of the input orientation angle does not have as strong and regular macular cross as a normal subject but has concentric fringes that vary in amplitude but not color. The birefringence changes seen as different in color do not correspond to a single anatomic feature that is readily visible in the top middle image but instead extend horizontally to the left of the lesion. (Bottom right) Maximum of the parallel detector, again showing variations in polarization content and concentric fringes. (Lower panels) Left, OCT image of PED, showing the fluid elevating the retina; right, sampling region, showing that the scan data traverse the center of the PED.

Fig. 10
Fig. 10

Retinal images showing well-defined CNV in a 51 year old Caucasian female, using the Heidelberg retinal angiograph. (Top left) Early-phase FA, showing the early leakage and a dark border around the CNV membrane that blocks fluorescence. A central component of the lesion is weakly fluorescent. (Top center) Late-phase FA, showing progressive leakage, the border that blocks fluorescence, and the central component that is weakly fluorescent. Note that while the retina is not normal outside the region of the lesion, there is no extensive leakage nor strongly fluorescent structures other than the lesion. (Top right) Near-infrared image without dye, showing a strong light return from the region that is overlapping and mainly outside the dark border in the left and middle panels. (Bottom left) Early-phase ICG, showing a well-defined CNV that corresponds in size to that seen on FA, other than the stronger fluorescence of the components superior to the main lesion. (Bottom middle) Late-phase ICG, showing more evidence of fluorescent structures outside the border of the membrane that is well defined on FA. The dark border corresponds to the brighter region on near IR, in the top-right panel. (Bottom right) Short-wavelength ( 488 nm ) excitation with a barrier filter that passes mainly longer wavelengths, and prior to the injection of fluorescent dye, termed autofluorescence. The central component of the lesion blocks the returning light. The brightest component corresponds better to the bright portion in the near-infrared image in the top right than the angiography images, which indicate that the active edge of the lesion is smaller.

Fig. 11
Fig. 11

Polarimetry images of the patient from Fig. 10 on a scale sufficiently small so as not to include the lesion components outside the main well-defined lesion. (Top left) Depolarized light image, emphasizing deeper features and with retinal vessels seen as absorbing structures and the rim of the CNV appearing bright compared with neighboring retina. This region compares well with the near-IR image in Fig. 10 but is larger in diameter than the active edge of the lesion in the angiography images. Both the depolarized light image and the right-column images from Fig. 10 correspond to the dark border around the CNV in the angiography images. There is a central component also seen in all but the gray-scale birefringence image. (Top center) Average of all 40 images, showing more fluid leakage and a more distinct central component of the membrane. (Top right) Maximum of the parallel detector, emphasizing superficial features, emphasizing the superficial features. (Bottom left) Birefringence image, lacking typical macular cross and showing the lower-left edge of the border of the exudation. (Bottom middle) Cardinal directions scale map of phase of the maximum phase of the crossed detector. Note the lack of symmetry about the fovea, but the strong color change in the lower-left portion of the lesion. There is also a color change in the central lesion component. (Bottom right) Cardinal directions scale map of phase of the maximum phase of the parallel detector, showing findings similar to those of the crossed detector map.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Parallel polarized image = mean ( parallel detector ) minimum ( parallel detector ) .
C = ( L max L min ) ( L max + L min ) ,

Metrics